亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study reports the impact of examining either with digital or paper-based tests in science subjects taught across the second-ary level. With our method, we compare the percentile ranking scores of two cohorts earned in computer- and paper-based teacher-made assessments to find signals of a testing mode effect. It was found that overall, at cohort and gender levels, pupils were rank-ordered equivalently in both testing modes. Furthermore, females and top-achieving pupils were the two subgroups where the differences between modes were smaller. The practical implications of these findings are discussed from the lens of a case study and the doubt about whether regular schools could afford to deliver high-stakes computer-based tests.

相關內容

This study investigates the possibility of mitigating the demographic biases that affect face recognition technologies through the use of synthetic data. Demographic biases have the potential to impact individuals from specific demographic groups, and can be identified by observing disparate performance of face recognition systems across demographic groups. They primarily arise from the unequal representations of demographic groups in the training data. In recent times, synthetic data have emerged as a solution to some problems that affect face recognition systems. In particular, during the generation process it is possible to specify the desired demographic and facial attributes of images, in order to control the demographic distribution of the synthesized dataset, and fairly represent the different demographic groups. We propose to fine-tune with synthetic data existing face recognition systems that present some demographic biases. We use synthetic datasets generated with GANDiffFace, a novel framework able to synthesize datasets for face recognition with controllable demographic distribution and realistic intra-class variations. We consider multiple datasets representing different demographic groups for training and evaluation. Also, we fine-tune different face recognition systems, and evaluate their demographic fairness with different metrics. Our results support the proposed approach and the use of synthetic data to mitigate demographic biases in face recognition.

In recent years, self-supervised learning has excelled for its capacity to learn robust feature representations from unlabelled data. Networks pretrained through self-supervision serve as effective feature extractors for downstream tasks, including Few-Shot Learning. While the evaluation of unsupervised approaches for few-shot learning is well-established in imagery, it is notably absent in acoustics. This study addresses this gap by assessing large-scale self-supervised models' performance in few-shot audio classification. Additionally, we explore the relationship between a model's few-shot learning capability and other downstream task benchmarks. Our findings reveal state-of-the-art performance in some few-shot problems such as SpeechCommandsv2, as well as strong correlations between speech-based few-shot problems and various downstream audio tasks.

We present a simple argument using Promise Theory and dimensional analysis for the Dunbar scaling hierarchy, supported by recent data from group formation in Wikipedia editing. We show how the assumption of a common priority seeds group alignment until the costs associated with attending to the group outweigh the benefits in a detailed balance scenario. Subject to partial efficiency of implementing promised intentions, we can reproduce a series of compatible rates that balance growth with entropy.

Hierarchical topic modeling aims to discover latent topics from a corpus and organize them into a hierarchy to understand documents with desirable semantic granularity. However, existing work struggles with producing topic hierarchies of low affinity, rationality, and diversity, which hampers document understanding. To overcome these challenges, we in this paper propose Transport Plan and Context-aware Hierarchical Topic Model (TraCo). Instead of early simple topic dependencies, we propose a transport plan dependency method. It constrains dependencies to ensure their sparsity and balance, and also regularizes topic hierarchy building with them. This improves affinity and diversity of hierarchies. We further propose a context-aware disentangled decoder. Rather than previously entangled decoding, it distributes different semantic granularity to topics at different levels by disentangled decoding. This facilitates the rationality of hierarchies. Experiments on benchmark datasets demonstrate that our method surpasses state-of-the-art baselines, effectively improving the affinity, rationality, and diversity of hierarchical topic modeling with better performance on downstream tasks.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司