亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.

相關內容

Large-scale applications of Visual Place Recognition (VPR) require computationally efficient approaches. Further, a well-balanced combination of data-based and training-free approaches can decrease the required amount of training data and effort and can reduce the influence of distribution shifts between the training and application phases. This paper proposes a runtime and data-efficient hierarchical VPR pipeline that extends existing approaches and presents novel ideas. There are three main contributions: First, we propose Local Positional Graphs (LPG), a training-free and runtime-efficient approach to encode spatial context information of local image features. LPG can be combined with existing local feature detectors and descriptors and considerably improves the image-matching quality compared to existing techniques in our experiments. Second, we present Attentive Local SPED (ATLAS), an extension of our previous local features approach with an attention module that improves the feature quality while maintaining high data efficiency. The influence of the proposed modifications is evaluated in an extensive ablation study. Third, we present a hierarchical pipeline that exploits hyperdimensional computing to use the same local features as holistic HDC-descriptors for fast candidate selection and for candidate reranking. We combine all contributions in a runtime and data-efficient VPR pipeline that shows benefits over the state-of-the-art method Patch-NetVLAD on a large collection of standard place recognition datasets with 15$\%$ better performance in VPR accuracy, 54$\times$ faster feature comparison speed, and 55$\times$ less descriptor storage occupancy, making our method promising for real-world high-performance large-scale VPR in changing environments. Code will be made available with publication of this paper.

The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.

We solve constrained optimal transport problems between the laws of solutions of stochastic differential equations (SDEs). We consider SDEs with irregular coefficients, making only minimal regularity assumptions. We show that the so-called synchronous coupling is optimal among bicausal couplings, that is couplings that respect the flow of information encoded in the stochastic processes. Our results provide a method to numerically compute the adapted Wasserstein distance between laws of SDEs with irregular coefficients. Moreover, we introduce a transformation-based semi-implicit numerical scheme and establish the first strong convergence result for SDEs with exponentially growing and discontinuous drift.

The ParaDiag family of algorithms solves differential equations by using preconditioners that can be inverted in parallel through diagonalization. In the context of optimal control of linear parabolic PDEs, the state-of-the-art ParaDiag method is limited to solving self-adjoint problems with a tracking objective. We propose three improvements to the ParaDiag method: the use of alpha-circulant matrices to construct an alternative preconditioner, a generalization of the algorithm for solving non-self-adjoint equations, and the formulation of an algorithm for terminal-cost objectives. We present novel analytic results about the eigenvalues of the preconditioned systems for all discussed ParaDiag algorithms in the case of self-adjoint equations, which proves the favorable properties the alpha-circulant preconditioner. We use these results to perform a theoretical parallel-scaling analysis of ParaDiag for self-adjoint problems. Numerical tests confirm our findings and suggest that the self-adjoint behavior, which is backed by theory, generalizes to the non-self-adjoint case. We provide a sequential, open-source reference solver in Matlab for all discussed algorithms.

Segmentation of brain structures on MRI is the primary step for further quantitative analysis of brain diseases. Manual segmentation is still considered the gold standard in terms of accuracy; however, such data is extremely time-consuming to generate. This paper presents a deep learning-based segmentation approach for 12 deep-brain structures, utilizing multiple region-based U-Nets. The brain is divided into three focal regions of interest that encompass the brainstem, the ventricular system, and the striatum. Next, three region-based U-nets are run in parallel to parcellate these larger structures into their respective four substructures. This approach not only greatly reduces the training and processing times but also significantly enhances the segmentation accuracy, compared to segmenting the entire MRI image at once. Our approach achieves remarkable accuracy with an average Dice Similarity Coefficient (DSC) of 0.901 and 95% Hausdorff Distance (HD95) of 1.155 mm. The method was compared with state-of-the-art segmentation approaches, demonstrating a high level of accuracy and robustness of the proposed method.

In many communication contexts, the capabilities of the involved actors cannot be known beforehand, whether it is a cell, a plant, an insect, or even a life form unknown to Earth. Regardless of the recipient, the message space and time scale could be too fast, too slow, too large, or too small and may never be decoded. Therefore, it pays to devise a way to encode messages agnostic of space and time scales. We propose the use of fractal functions as self-executable infinite-frequency carriers for sending messages, given their properties of structural self-similarity and scale invariance. We call it `fractal messaging'. Starting from a spatial embedding, we introduce a framework for a space-time scale-free messaging approach to this challenge. When considering a space and time-agnostic framework for message transmission, it would be interesting to encode a message such that it could be decoded at several spatio-temporal scales. Hence, the core idea of the framework proposed herein is to encode a binary message as waves along infinitely many frequencies (in power-like distributions) and amplitudes, transmit such a message, and then decode and reproduce it. To do so, the components of the Weierstrass function, a known fractal, are used as carriers of the message. Each component will have its amplitude modulated to embed the binary stream, allowing for a space-time-agnostic approach to messaging.

Reconstructing a dynamic object with affine motion in computerized tomography (CT) leads to motion artifacts if the motion is not taken into account. In most cases, the actual motion is neither known nor can be determined easily. As a consequence, the respective model that describes CT is incomplete. The iterative RESESOP-Kaczmarz method can - under certain conditions and by exploiting the modeling error - reconstruct dynamic objects at different time points even if the exact motion is unknown. However, the method is very time-consuming. To speed the reconstruction process up and obtain better results, we combine the following three steps: 1. RESESOP-Kacmarz with only a few iterations is implemented to reconstruct the object at different time points. 2. The motion is estimated via landmark detection, e.g. using deep learning. 3. The estimated motion is integrated into the reconstruction process, allowing the use of dynamic filtered backprojection. We give a short review of all methods involved and present numerical results as a proof of principle.

We introduce a multiple testing procedure that controls the median of the proportion of false discoveries (FDP) in a flexible way. The procedure only requires a vector of p-values as input and is comparable to the Benjamini-Hochberg method, which controls the mean of the FDP. Our method allows freely choosing one or several values of alpha after seeing the data -- unlike Benjamini-Hochberg, which can be very liberal when alpha is chosen post hoc. We prove these claims and illustrate them with simulations. Our procedure is inspired by a popular estimator of the total number of true hypotheses. We adapt this estimator to provide simultaneously median unbiased estimators of the FDP, valid for finite samples. This simultaneity allows for the claimed flexibility. Our approach does not assume independence. The time complexity of our method is linear in the number of hypotheses, after sorting the p-values.

In four-dimensional scanning transmission electron microscopy (4D STEM) a focused beam is scanned over a specimen and a diffraction pattern is recorded at each position using a pixelated detector. During the experiment, it must be ensured that the scan coordinate system of the beam is correctly calibrated relative to the detector coordinate system. Various simplified and approximate models are used implicitly and explicitly for understanding and analyzing the recorded data, requiring translation between the physical reality of the instrument and the abstractions used in data interpretation. Here, we introduce a calibration method where interactive live data processing in combination with a digital twin is used to match a set of models and their parameters with the action of a real-world instrument.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司