In this note, when the dimension $p$ is large we look into the insight of the Mar$\check{c}$enko-Pastur equation to get an explicit equality relationship, and use the obtained equality to establish a new kind of orthogonally equivariant estimator of the population covariance matrix. Under some regularity conditions, the proposed novel estimators of the population eigenvalues are shown to be consistent for the eigenvalues of population covariance matrix. It is also shown that the proposed estimator is the best orthogonally equivariant estimator of population covariance matrix under the normalized Stein loss function.
In this paper, we examine the relationship between the stability of the dynamical system $x^{\prime}=f(x)$ and the computability of its basins of attraction. We present a computable $C^{\infty}$ system $x^{\prime}=f(x)$ that possesses a computable and stable equilibrium point, yet whose basin of attraction is robustly non-computable in a neighborhood of $f$ in the sense that both the equilibrium point and the non-computability of its associated basin of attraction persist when $f$ is slightly perturbed. This indicates that local stability near a stable equilibrium point alone is insufficient to guarantee the computability of its basin of attraction. However, we also demonstrate that the basins of attraction associated with a structurally stable - globally stable (robust) - planar system defined on a compact set are computable. Our findings suggest that the global stability of a system and the compactness of the domain play a pivotal role in determining the computability of its basins of attraction.
The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.
We consider estimators obtained by iterates of the conjugate gradient (CG) algorithm applied to the normal equation of prototypical statistical inverse problems. Stopping the CG algorithm early induces regularisation, and optimal convergence rates of prediction and reconstruction error are established in wide generality for an ideal oracle stopping time. Based on this insight, a fully data-driven early stopping rule $\tau$ is constructed, which also attains optimal rates, provided the error in estimating the noise level is not dominant. The error analysis of CG under statistical noise is subtle due to its nonlinear dependence on the observations. We provide an explicit error decomposition into two terms, which shares important properties of the classical bias-variance decomposition. Together with a continuous interpolation between CG iterates, this paves the way for a comprehensive error analysis of early stopping. In particular, a general oracle-type inequality is proved for the prediction error at $\tau$. For bounding the reconstruction error, a more refined probabilistic analysis, based on concentration of self-normalised Gaussian processes, is developed. The methodology also provides some new insights into early stopping for CG in deterministic inverse problems. A numerical study for standard examples shows good results in practice for early stopping at $\tau$.
We consider the problem of low-rank rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is ``long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of a low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new spectral algorithm for recovering the singular values and left singular vectors of the original matrix $M$ based on a variant of the standard non-backtracking operator of a suitably defined bipartite weighted random graph, which we call a \textit{non-backtracking wedge operator}. When $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors. As an application, for low-CP-rank orthogonal $k$-tensor completion, we efficiently achieve weak recovery with sample size $O(n^{k/2})$ and weak consistency with sample size $\omega(n^{k/2})$. A similar result is obtained for low-multilinear-rank tensor completion with $O(n^{k/2})$ many samples.
In various stereological problems an $n$-dimensional convex body is intersected with an $(n-1)$-dimensional Isotropic Uniformly Random (IUR) hyperplane. In this paper the cumulative distribution function associated with the $(n-1)$-dimensional volume of such a random section is studied. This distribution is also known as chord length distribution and cross section area distribution in the planar and spatial case respectively. For various classes of convex bodies it is shown that these distribution functions are absolutely continuous with respect to Lebesgue measure. A Monte Carlo simulation scheme is proposed for approximating the corresponding probability density functions.
Let $G$ be a group with undecidable domino problem (such as $\mathbb{Z}^2$). We prove the undecidability of all nontrivial dynamical properties for sofic $G$-subshifts, that such a result fails for SFTs, and an undecidability result for dynamical properties of $G$-SFTs similar to the Adian-Rabin theorem. For $G$ amenable we prove that topological entropy is not computable from presentations of SFTs, and a more general result for dynamical invariants taking values in partially ordered sets.
Complex conjugate matrix equations (CCME) have aroused the interest of many researchers because of computations and antilinear systems. Existing research is dominated by its time-invariant solving methods, but lacks proposed theories for solving its time-variant version. Moreover, artificial neural networks are rarely studied for solving CCME. In this paper, starting with the earliest CCME, zeroing neural dynamics (ZND) is applied to solve its time-variant version. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 model and Con-CZND2 model are proposed and theoretically prove convergence and effectiveness. Thirdly, three numerical experiments are designed to illustrate the effectiveness of the two models, compare their differences, highlight the significance of neural dynamics in the complex field, and refine the theory related to ZND.
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial data, the regularity of the mild solution is investigated, and an error estimate is derived within the spatial (L^2)-norm setting. In the case of smooth initial data, two error estimates are established within the framework of general spatial (L^q)-norms.
We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.
We show that it is undecidable whether a system of linear equations over the Laurent polynomial ring $\mathbb{Z}[X^{\pm}]$ admit solutions where a specified subset of variables take value in the set of monomials $\{X^z \mid z \in \mathbb{Z}\}$. In particular, we construct a finitely presented $\mathbb{Z}[X^{\pm}]$-module, where it is undecidable whether a linear equation $X^{z_1} \boldsymbol{f}_1 + \cdots + X^{z_n} \boldsymbol{f}_n = \boldsymbol{f}_0$ has solutions $z_1, \ldots, z_n \in \mathbb{Z}$. This contrasts the decidability of the case $n = 1$, which can be deduced from Noskov's Lemma. We apply this result to settle a number of problems in computational group theory. We show that it is undecidable whether a system of equations has solutions in the wreath product $\mathbb{Z} \wr \mathbb{Z}$, providing a negative answer to an open problem of Kharlampovich, L\'{o}pez and Miasnikov (2020). We show that there exists a finitely generated abelian-by-cyclic group in which the problem of solving a single quadratic equation is undecidable. We also construct a finitely generated abelian-by-cyclic group, different to that of Mishchenko and Treier (2017), in which the Knapsack Problem is undecidable. In contrast, we show that the problem of Coset Intersection is decidable in all finitely generated abelian-by-cyclic groups.