亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the $\varphi^4$ model and weak lensing convergence maps with higher resolution than in previous works.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 貪心 · 稀疏 · 特化 · 散度 ·
2023 年 7 月 21 日

Dense kernel matrices resulting from pairwise evaluations of a kernel function arise naturally in machine learning and statistics. Previous work in constructing sparse approximate inverse Cholesky factors of such matrices by minimizing Kullback-Leibler divergence recovers the Vecchia approximation for Gaussian processes. These methods rely only on the geometry of the evaluation points to construct the sparsity pattern. In this work, we instead construct the sparsity pattern by leveraging a greedy selection algorithm that maximizes mutual information with target points, conditional on all points previously selected. For selecting $k$ points out of $N$, the naive time complexity is $\mathcal{O}(N k^4)$, but by maintaining a partial Cholesky factor we reduce this to $\mathcal{O}(N k^2)$. Furthermore, for multiple ($m$) targets we achieve a time complexity of $\mathcal{O}(N k^2 + N m^2 + m^3)$, which is maintained in the setting of aggregated Cholesky factorization where a selected point need not condition every target. We apply the selection algorithm to image classification and recovery of sparse Cholesky factors. By minimizing Kullback-Leibler divergence, we apply the algorithm to Cholesky factorization, Gaussian process regression, and preconditioning with the conjugate gradient, improving over $k$-nearest neighbors selection.

In many modern statistical problems, the limited available data must be used both to develop the hypotheses to test, and to test these hypotheses-that is, both for exploratory and confirmatory data analysis. Reusing the same dataset for both exploration and testing can lead to massive selection bias, leading to many false discoveries. Selective inference is a framework that allows for performing valid inference even when the same data is reused for exploration and testing. In this work, we are interested in the problem of selective inference for data clustering, where a clustering procedure is used to hypothesize a separation of the data points into a collection of subgroups, and we then wish to test whether these data-dependent clusters in fact represent meaningful differences within the data. Recent work by Gao et al. [2022] provides a framework for doing selective inference for this setting, where a hierarchical clustering algorithm is used for producing the cluster assignments, which was then extended to k-means clustering by Chen and Witten [2022]. Both these works rely on assuming a known covariance structure for the data, but in practice, the noise level needs to be estimated-and this is particularly challenging when the true cluster structure is unknown. In our work, we extend this work to the setting of noise with unknown variance, and provide a selective inference method for this more general setting. Empirical results show that our new method is better able to maintain high power while controlling Type I error when the true noise level is unknown.

The number of modes in a probability density function is representative of the model's complexity and can also be viewed as the number of existing subpopulations. Despite its relevance, little research has been devoted to its estimation. Focusing on the univariate setting, we propose a novel approach targeting prediction accuracy inspired by some overlooked aspects of the problem. We argue for the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view blending global and local density properties. Our method builds upon a combination of flexible kernel estimators and parsimonious compositional splines. Feature exploration, model selection and mode testing are implemented in the Bayesian inference paradigm, providing soft solutions and allowing to incorporate expert judgement in the process. The usefulness of our proposal is illustrated through a case study in sports analytics, showcasing multiple companion visualisation tools. A thorough simulation study demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, our method emerges as a top-tier alternative offering innovative solutions for analysts.

The Lamport diagram is a pervasive and intuitive tool for informal reasoning about causality in a concurrent system. However, traditional axiomatic formalizations of Lamport diagrams can be painful to work with in a mechanized setting like Agda, whereas inductively-defined data would enjoy structural induction and automatic normalization. We propose an alternative, inductive formalization -- the causal separation diagram (CSD) -- that takes inspiration from string diagrams and concurrent separation logic. CSDs enjoy a graphical syntax similar to Lamport diagrams, and can be given compositional semantics in a variety of domains. We demonstrate the utility of CSDs by applying them to logical clocks -- widely-used mechanisms for reifying causal relationships as data -- yielding a generic proof of Lamport's clock condition that is parametric in a choice of clock. We instantiate this proof on Lamport's scalar clock, on Mattern's vector clock, and on the matrix clocks of Raynal et al. and of Wuu and Bernstein, yielding verified implementations of each. Our results and general framework are mechanized in the Agda proof assistant.

Mesoscale simulations of discrete defects in metals provide an ideal framework to investigate the micro-scale mechanisms governing the plastic deformation under high thermal and mechanical loading conditions. To bridge size and time-scale while limiting computational effort, typically the concept of representative volume elements (RVEs) is employed. This approach considers the microstructure evolution in a volume that is representative of the overall material behavior. However, in settings with complex thermal and mechanical loading histories careful consideration of the impact of modeling constraints in terms of time scale and simulation domain on predicted results is required. We address the representation of heterogeneous dislocation structure formation in simulation volumes using the example of residual stress formation during cool-down of laser powder-bed fusion (LPBF) of AISI 316L stainless steel. This is achieved by a series of large-scale three-dimensional discrete dislocation dynamics (DDD) simulations assisted by thermo-mechanical finite element modeling of the LPBF process. Our results show that insufficient size of periodic simulation domains can result in dislocation patterns that reflect the boundaries of the primary cell. More pronounced dislocation interaction observed for larger domains highlight the significance of simulation domain constraints for predicting mechanical properties. We formulate criteria that characterize representative volume elements by capturing the conformity of the dislocation structure to the bulk material. This work provides a basis for future investigations of heterogeneous microstructure formation in mesoscale simulations of bulk material behavior.

The last two decades have seen considerable progress in foundational aspects of statistical network analysis, but the path from theory to application is not straightforward. Two large, heterogeneous samples of small networks of within-household contacts in Belgium were collected using two different but complementary sampling designs: one smaller but with all contacts in each household observed, the other larger and more representative but recording contacts of only one person per household. We wish to combine their strengths to learn the social forces that shape household contact formation and facilitate simulation for prediction of disease spread, while generalising to the population of households in the region. To accomplish this, we describe a flexible framework for specifying multi-network models in the exponential family class and identify the requirements for inference and prediction under this framework to be consistent, identifiable, and generalisable, even when data are incomplete; explore how these requirements may be violated in practice; and develop a suite of quantitative and graphical diagnostics for detecting violations and suggesting improvements to candidate models. We report on the effects of network size, geography, and household roles on household contact patterns (activity, heterogeneity in activity, and triadic closure).

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

In order to overcome the expressive limitations of graph neural networks (GNNs), we propose the first method that exploits vector flows over graphs to develop globally consistent directional and asymmetric aggregation functions. We show that our directional graph networks (DGNs) generalize convolutional neural networks (CNNs) when applied on a grid. Whereas recent theoretical works focus on understanding local neighbourhoods, local structures and local isomorphism with no global information flow, our novel theoretical framework allows directional convolutional kernels in any graph. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then we propose the use of the Laplacian eigenvectors as such vector field, and we show that the method generalizes CNNs on an n-dimensional grid, and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. Finally, we bring the power of CNN data augmentation to graphs by providing a means of doing reflection, rotation and distortion on the underlying directional field. We evaluate our method on different standard benchmarks and see a relative error reduction of 8\% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset. An important outcome of this work is that it enables to translate any physical or biological problems with intrinsic directional axes into a graph network formalism with an embedded directional field.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.

北京阿比特科技有限公司