亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Current state-of-the-art analyses on the convergence of gradient descent for training neural networks focus on characterizing properties of the loss landscape, such as the Polyak-Lojaciewicz (PL) condition and the restricted strong convexity. While gradient descent converges linearly under such conditions, it remains an open question whether Nesterov's momentum enjoys accelerated convergence under similar settings and assumptions. In this work, we consider a new class of objective functions, where only a subset of the parameters satisfies strong convexity, and show Nesterov's momentum achieves acceleration in theory for this objective class. We provide two realizations of the problem class, one of which is deep ReLU networks, which --to the best of our knowledge--constitutes this work the first that proves accelerated convergence rate for non-trivial neural network architectures.

相關內容

動量方法 (Polyak, 1964) 旨在加速學習,特別是處理高曲率、小但一致的梯度,或是帶噪聲的梯度。 動量算法積累了之前梯度指數級衰減的移動平均,并且繼續沿該方向移動。

Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length $n$, previous works have shown that constant-depth transformers with finite precision $\mathsf{poly}(n)$ embedding size can only solve problems in $\mathsf{TC}^0$ without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in $\mathsf{AC}^0$, a proper subset of $ \mathsf{TC}^0$. However, with $T$ steps of CoT, constant-depth transformers using constant-bit precision and $O(\log n)$ embedding size can solve any problem solvable by boolean circuits of size $T$. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.

The expectation to deploy a universal neural network for speech enhancement, with the aim of improving noise robustness across diverse speech processing tasks, faces challenges due to the existing lack of awareness within static speech enhancement frameworks regarding the expected speech in downstream modules. These limitations impede the effectiveness of static speech enhancement approaches in achieving optimal performance for a range of speech processing tasks, thereby challenging the notion of universal applicability. The fundamental issue in achieving universal speech enhancement lies in effectively informing the speech enhancement module about the features of downstream modules. In this study, we present a novel weighting prediction approach, which explicitly learns the task relationships from downstream training information to address the core challenge of universal speech enhancement. We found the role of deciding whether to employ data augmentation techniques as crucial downstream training information. This decision significantly impacts the expected speech and the performance of the speech enhancement module. Moreover, we introduce a novel speech enhancement network, the Plugin Speech Enhancement (Plugin-SE). The Plugin-SE is a dynamic neural network that includes the speech enhancement module, gate module, and weight prediction module. Experimental results demonstrate that the proposed Plugin-SE approach is competitive or superior to other joint training methods across various downstream tasks.

We analyze recurrent neural networks trained with gradient descent in the supervised learning setting for dynamical systems, and prove that gradient descent can achieve optimality \emph{without} massive overparameterization. Our in-depth nonasymptotic analysis (i) provides sharp bounds on the network size $m$ and iteration complexity $\tau$ in terms of the sequence length $T$, sample size $n$ and ambient dimension $d$, and (ii) identifies the significant impact of long-term dependencies in the dynamical system on the convergence and network width bounds characterized by a cutoff point that depends on the Lipschitz continuity of the activation function. Remarkably, this analysis reveals that an appropriately-initialized recurrent neural network trained with $n$ samples can achieve optimality with a network size $m$ that scales only logarithmically with $n$. This sharply contrasts with the prior works that require high-order polynomial dependency of $m$ on $n$ to establish strong regularity conditions. Our results are based on an explicit characterization of the class of dynamical systems that can be approximated and learned by recurrent neural networks via norm-constrained transportation mappings, and establishing local smoothness properties of the hidden state with respect to the learnable parameters.

Two-sample hypothesis testing for large graphs is popular in cognitive science, probabilistic machine learning and artificial intelligence. While numerous methods have been proposed in the literature to address this problem, less attention has been devoted to scenarios involving graphs of unequal size or situations where there are only one or a few samples of graphs. In this article, we propose a Frobenius test statistic tailored for small sample sizes and unequal-sized random graphs to test whether they are generated from the same model or not. Our approach involves an algorithm for generating bootstrapped adjacency matrices from estimated community-wise edge probability matrices, forming the basis of the Frobenius test statistic. We derive the asymptotic distribution of the proposed test statistic and validate its stability and efficiency in detecting minor differences in underlying models through simulations. Furthermore, we explore its application to fMRI data where we are able to distinguish brain activity patterns when subjects are exposed to sentences and pictures for two different stimuli and the control group.

Mental health conditions, prevalent across various demographics, necessitate efficient monitoring to mitigate their adverse impacts on life quality. The surge in data-driven methodologies for mental health monitoring has underscored the importance of privacy-preserving techniques in handling sensitive health data. Despite strides in federated learning for mental health monitoring, existing approaches struggle with vulnerabilities to certain cyber-attacks and data insufficiency in real-world applications. In this paper, we introduce a differential private federated transfer learning framework for mental health monitoring to enhance data privacy and enrich data sufficiency. To accomplish this, we integrate federated learning with two pivotal elements: (1) differential privacy, achieved by introducing noise into the updates, and (2) transfer learning, employing a pre-trained universal model to adeptly address issues of data imbalance and insufficiency. We evaluate the framework by a case study on stress detection, employing a dataset of physiological and contextual data from a longitudinal study. Our finding show that the proposed approach can attain a 10% boost in accuracy and a 21% enhancement in recall, while ensuring privacy protection.

Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司