亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel approach to active learning that takes into account the non-independent and identically distributed (non-i.i.d.) structure of a clinical trial setting. There exists two types of clinical trials: retrospective and prospective. Retrospective clinical trials analyze data after treatment has been performed; prospective clinical trials collect data as treatment is ongoing. Typically, active learning approaches assume the dataset is i.i.d. when selecting training samples; however, in the case of clinical trials, treatment results in a dependency between the data collected at the current and past visits. Thus, we propose prospective active learning to overcome the limitations present in traditional active learning methods and apply it to disease detection in optical coherence tomography (OCT) images, where we condition on the time an image was collected to enforce the i.i.d. assumption. We compare our proposed method to the traditional active learning paradigm, which we refer to as retrospective in nature. We demonstrate that prospective active learning outperforms retrospective active learning in two different types of test settings.

相關內容

主動學習是機器學習(更普遍的說是人工智能)的一個子領域,在統計學領域也叫查詢學習、最優實驗設計。“學習模塊”和“選擇策略”是主動學習算法的2個基本且重要的模塊。 主動學習是“一種學習方法,在這種方法中,學生會主動或體驗性地參與學習過程,并且根據學生的參與程度,有不同程度的主動學習。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“學生除了被動地聽課以外,還從事其他活動。” 在高等教育研究協會(ASHE)的一份報告中,作者討論了各種促進主動學習的方法。他們引用了一些文獻,這些文獻表明學生不僅要做聽,還必須做更多的事情才能學習。他們必須閱讀,寫作,討論并參與解決問題。此過程涉及三個學習領域,即知識,技能和態度(KSA)。這種學習行為分類法可以被認為是“學習過程的目標”。特別是,學生必須從事諸如分析,綜合和評估之類的高級思維任務。

We propose a novel sensitivity analysis framework for linear estimands when identification failure can be viewed as seeing the wrong distribution of outcomes. Our family of assumptions bounds the density ratio between the observed and true conditional outcome distribution. This framework links naturally to selection models, generalizes existing assumptions for the Regression Discontinuity (RD) and Inverse Propensity Weighting (IPW) estimand, and provides a novel nonparametric perspective on violations of identification assumptions for ordinary least squares (OLS). Our sharp partial identification results extend existing results for IPW to cover other estimands and assumptions that allow even unbounded likelihood ratios, yielding a simple and unified characterization of bounds under assumptions like c-dependence of Masten and Poirier (2018). The sharp bounds can be written as a simple closed form moment of the data, the nuisance functions estimated in the primary analysis, and the conditional outcome quantile function. We find our method does well in simulations even when targeting a discontinuous and nearly infinite bound.

This paper introduces constrained correlated equilibrium, a solution concept combining correlation and coupled constraints in finite non-cooperative games.In the general case of an arbitrary correlation device and coupled constraints in the extended game, we study the conditions for equilibrium. In the particular case of constraints induced by a feasible set of probability distributions over action profiles, we first show that canonical correlation devices are sufficient to characterize the set of constrained correlated equilibrium distributions and provide conditions of their existence. Second, it is shown that constrained correlated equilibria of the mixed extension of the game do not lead to additional equilibrium distributions. Third, we show that the constrained correlated equilibrium distributions may not belong to the polytope of correlated equilibrium distributions. Finally, we illustrate these results through numerical examples.

Supervised learning models are challenged by the intrinsic complexities of training data such as outliers and minority subpopulations and intentional attacks at inference time with adversarial samples. While traditional robust learning methods and the recent adversarial training approaches are designed to handle each of the two challenges, to date, no work has been done to develop models that are robust with regard to the low-quality training data and the potential adversarial attack at inference time simultaneously. It is for this reason that we introduce Outlier Robust Adversarial Training (ORAT) in this work. ORAT is based on a bi-level optimization formulation of adversarial training with a robust rank-based loss function. Theoretically, we show that the learning objective of ORAT satisfies the $\mathcal{H}$-consistency in binary classification, which establishes it as a proper surrogate to adversarial 0/1 loss. Furthermore, we analyze its generalization ability and provide uniform convergence rates in high probability. ORAT can be optimized with a simple algorithm. Experimental evaluations on three benchmark datasets demonstrate the effectiveness and robustness of ORAT in handling outliers and adversarial attacks. Our code is available at //github.com/discovershu/ORAT.

Gradient inversion attacks are an ubiquitous threat in federated learning as they exploit gradient leakage to reconstruct supposedly private training data. Recent work has proposed to prevent gradient leakage without loss of model utility by incorporating a PRivacy EnhanCing mODulE (PRECODE) based on variational modeling. Without further analysis, it was shown that PRECODE successfully protects against gradient inversion attacks. In this paper, we make multiple contributions. First, we investigate the effect of PRECODE on gradient inversion attacks to reveal its underlying working principle. We show that variational modeling introduces stochasticity into the gradients of PRECODE and the subsequent layers in a neural network. The stochastic gradients of these layers prevent iterative gradient inversion attacks from converging. Second, we formulate an attack that disables the privacy preserving effect of PRECODE by purposefully omitting stochastic gradients during attack optimization. To preserve the privacy preserving effect of PRECODE, our analysis reveals that variational modeling must be placed early in the network. However, early placement of PRECODE is typically not feasible due to reduced model utility and the exploding number of additional model parameters. Therefore, as a third contribution, we propose a novel privacy module -- the Convolutional Variational Bottleneck (CVB) -- that can be placed early in a neural network without suffering from these drawbacks. We conduct an extensive empirical study on three seminal model architectures and six image classification datasets. We find that all architectures are susceptible to gradient leakage attacks, which can be prevented by our proposed CVB. Compared to PRECODE, we show that our novel privacy module requires fewer trainable parameters, and thus computational and communication costs, to effectively preserve privacy.

In this paper, we introduce a variation of the group testing problem capturing the idea that a positive test requires a combination of multiple ``types'' of item. Specifically, we assume that there are multiple disjoint \emph{semi-defective sets}, and a test is positive if and only if it contains at least one item from each of these sets. The goal is to reliably identify all of the semi-defective sets using as few tests as possible, and we refer to this problem as \textit{Concomitant Group Testing} (ConcGT). We derive a variety of algorithms for this task, focusing primarily on the case that there are two semi-defective sets. Our algorithms are distinguished by (i) whether they are deterministic (zero-error) or randomized (small-error), and (ii) whether they are non-adaptive, fully adaptive, or have limited adaptivity (e.g., 2 or 3 stages). Both our deterministic adaptive algorithm and our randomized algorithms (non-adaptive or limited adaptivity) are order-optimal in broad scaling regimes of interest, and improve significantly over baseline results that are based on solving a more general problem as an intermediate step (e.g., hypergraph learning).

This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司