Many real-time applications of the Internet of Things (IoT) need to deal with correlated information generated by multiple sensors. The design of efficient status update strategies that minimize the Age of Correlated Information (AoCI) is a key factor. In this paper, we consider an IoT network consisting of sensors equipped with the energy harvesting (EH) capability. We optimize the average AoCI at the data fusion center (DFC) by appropriately managing the energy harvested by sensors, whose true battery states are unobservable during the decision-making process. Particularly, we first formulate the dynamic status update procedure as a partially observable Markov decision process (POMDP), where the environmental dynamics are unknown to the DFC. In order to address the challenges arising from the causality of energy usage, unknown environmental dynamics, unobservability of sensors'true battery states, and large-scale discrete action space, we devise a deep reinforcement learning (DRL)-based dynamic status update algorithm. The algorithm leverages the advantages of the soft actor-critic and long short-term memory techniques. Meanwhile, it incorporates our proposed action decomposition and mapping mechanism. Extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with available DRL algorithms for POMDPs.
We investigate two efficient time discretizations for the post-processing technique of discontinuous Galerkin (DG) methods to solve hyperbolic conservation laws. The post-processing technique, which is applied at the final time of the DG method, can enhance the accuracy of the original DG solution (spatial superconvergence). One main difficulty of the post-processing technique is that the spatial superconvergence after post-processing needs to be matched with proper temporary accuracy. If the semi-discretized system (ODE system after spatial discretization) is under-resolved in time, then the space superconvergence will be concealed. In this paper, we focus our investigation on the recently designed SDG method and derive its explicit scheme from a correction process based on the DG weak formulation. We also introduce another similar technique, namely the spectral deferred correction (SDC) method. A comparison is made among both proposed time discretization techniques with the standard third-order Runge-Kutta method through several numerical examples, to conclude that both the SDG and SDC methods are efficient time discretization techniques for exploiting the spatial superconvergence of the DG methods.
Stochastic programs where the uncertainty distribution must be inferred from noisy data samples are considered. The stochastic programs are approximated with distributionally-robust optimizations that minimize the worst-case expected cost over ambiguity sets, i.e., sets of distributions that are sufficiently compatible with the observed data. In this paper, the ambiguity sets capture the set of probability distributions whose convolution with the noise distribution remains within a ball centered at the empirical noisy distribution of data samples parameterized by the total variation distance. Using the prescribed ambiguity set, the solutions of the distributionally-robust optimizations converge to the solutions of the original stochastic programs when the numbers of the data samples grow to infinity. Therefore, the proposed distributionally-robust optimization problems are asymptotically consistent. This is proved under the assumption that the distribution of the noise is uniformly diagonally dominant. More importantly, the distributionally-robust optimization problems can be cast as tractable convex optimization problems and are therefore amenable to large-scale stochastic problems.
Combinatorial Optimization (CO) problems over graphs appear routinely in many applications such as in optimizing traffic, viral marketing in social networks, and matching for job allocation. Due to their combinatorial nature, these problems are often NP-hard. Existing approximation algorithms and heuristics rely on the search space to find the solutions and become time-consuming when this space is large. In this paper, we design a neural method called COMBHelper to reduce this space and thus improve the efficiency of the traditional CO algorithms based on node selection. Specifically, it employs a Graph Neural Network (GNN) to identify promising nodes for the solution set. This pruned search space is then fed to the traditional CO algorithms. COMBHelper also uses a Knowledge Distillation (KD) module and a problem-specific boosting module to bring further efficiency and efficacy. Our extensive experiments show that the traditional CO algorithms with COMBHelper are at least 2 times faster than their original versions.
Atmospheric retrievals (AR) characterize exoplanets by estimating atmospheric parameters from observed light spectra, typically by framing the task as a Bayesian inference problem. However, traditional approaches such as nested sampling are computationally expensive, thus sparking an interest in solutions based on machine learning (ML). In this ongoing work, we first explore flow matching posterior estimation (FMPE) as a new ML-based method for AR and find that, in our case, it is more accurate than neural posterior estimation (NPE), but less accurate than nested sampling. We then combine both FMPE and NPE with importance sampling, in which case both methods outperform nested sampling in terms of accuracy and simulation efficiency. Going forward, our analysis suggests that simulation-based inference with likelihood-based importance sampling provides a framework for accurate and efficient AR that may become a valuable tool not only for the analysis of observational data from existing telescopes, but also for the development of new missions and instruments.
Optimizing static risk-averse objectives in Markov decision processes is difficult because they do not admit standard dynamic programming equations common in Reinforcement Learning (RL) algorithms. Dynamic programming decompositions that augment the state space with discrete risk levels have recently gained popularity in the RL community. Prior work has shown that these decompositions are optimal when the risk level is discretized sufficiently. However, we show that these popular decompositions for Conditional-Value-at-Risk (CVaR) and Entropic-Value-at-Risk (EVaR) are inherently suboptimal regardless of the discretization level. In particular, we show that a saddle point property assumed to hold in prior literature may be violated. However, a decomposition does hold for Value-at-Risk and our proof demonstrates how this risk measure differs from CVaR and EVaR. Our findings are significant because risk-averse algorithms are used in high-stake environments, making their correctness much more critical.
Thompson sampling (TS) has been known for its outstanding empirical performance supported by theoretical guarantees across various reward models in the classical stochastic multi-armed bandit problems. Nonetheless, its optimality is often restricted to specific priors due to the common observation that TS is fairly insensitive to the choice of the prior when it comes to asymptotic regret bounds. However, when the model contains multiple parameters, the optimality of TS highly depends on the choice of priors, which casts doubt on the generalizability of previous findings to other models. To address this gap, this study explores the impact of selecting noninformative priors, offering insights into the performance of TS when dealing with new models that lack theoretical understanding. We first extend the regret analysis of TS to the model of uniform distributions with unknown supports, which would be the simplest non-regular model. Our findings reveal that changing noninformative priors can significantly affect the expected regret, aligning with previously known results in other multiparameter bandit models. Although the uniform prior is shown to be optimal, we highlight the inherent limitation of its optimality, which is limited to specific parameterizations and emphasizes the significance of the invariance property of priors. In light of this limitation, we propose a slightly modified TS-based policy, called TS with Truncation (TS-T), which can achieve the asymptotic optimality for the Gaussian models and the uniform models by using the reference prior and the Jeffreys prior that are invariant under one-to-one reparameterizations. This policy provides an alternative approach to achieving optimality by employing fine-tuned truncation, which would be much easier than hunting for optimal priors in practice.
Analysis of pipe networks involves computing flow rates and pressure differences on pipe segments in the network, given the external inflow/outflow values. This analysis can be conducted using iterative methods, among which the algorithms of Hardy Cross and Newton-Raphson have historically been applied in practice. In this note, we address the mathematical analysis of the local convergence of these algorithms. The loop-based Newton-Raphson algorithm converges quadratically fast, and we provide estimates for its convergence radius to correct some estimates in the previous literature. In contrast, we show that the convergence of the Hardy Cross algorithm is only linear. This provides theoretical confirmation of experimental observations reported earlier in the literature.
Management of network resources in advanced IoT applications is a challenging topic due to their distributed nature from the Edge to the Cloud, and the heavy demand of real-time data from many sources to take action in the deployment. FANETs (Flying Ad-hoc Networks) are a clear example of heterogeneous multi-modal use cases, which require strict quality in the network communications, as well as the coordination of the computing capabilities, in order to operate correctly the final service. In this paper, we present a Virtual Network Embedding (VNE) framework designed for the allocation of dataflow applications, composed of nano-services that produce or consume data, in a wireless infrastructure, such as an airborne network. To address the problem, an anypath-based heuristic algorithm that considers the quality demand of the communication between nano-services is proposed, coined as Quality-Revenue Paired Anypath Dataflow VNE (QRPAD-VNE). We also provide a simulation environment for the evaluation of its performance according to the virtual network (VN) request load in the system. Finally, we show the suitability of a multi-parameter framework in conjunction with anypath routing in order to have better performance results that guarantee minimum quality in the wireless communications.
High-level synthesis (HLS) tools have provided significant productivity enhancements to the design flow of digital systems in recent years, resulting in highly-optimized circuits, in terms of area and latency. Given the evolution of hardware attacks, which can render them vulnerable, it is essential to consider security as a significant aspect of the HLS design flow. Yet the need to evaluate a huge number of functionally equivalent de-signs of the HLS design space challenges hardware security evaluation methods (e.g., fault injection - FI campaigns). In this work, we propose an evaluation methodology of hardware security properties of HLS-produced designs using state-of-the-art Graph Neural Network (GNN) approaches that achieves significant speedup and better scalability than typical evaluation methods (such as FI). We demonstrate the proposed methodology on a Double Modular Redundancy (DMR) coun-termeasure applied on an AES SBox implementation, en-hanced by diversifying the redundant modules through HLS directives. The experimental results show that GNNs can be efficiently trained to predict important hardware security met-rics concerning fault attacks (e.g., critical and detection error rates), by using regression. The proposed method predicts the fault vulnerability metrics of the HLS-based designs with high R-squared scores and achieves huge speedup compared to fault injection once the training of the GNN is completed.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.