亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.

相關內容

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

There has recently been an explosion of interest in how "higher-order" structures emerge in complex systems. This "emergent" organization has been found in a variety of natural and artificial systems, although at present the field lacks a unified understanding of what the consequences of higher-order synergies and redundancies are for systems. Typical research treat the presence (or absence) of synergistic information as a dependent variable and report changes in the level of synergy in response to some change in the system. Here, we attempt to flip the script: rather than treating higher-order information as a dependent variable, we use evolutionary optimization to evolve boolean networks with significant higher-order redundancies, synergies, or statistical complexity. We then analyse these evolved populations of networks using established tools for characterizing discrete dynamics: the number of attractors, average transient length, and Derrida coefficient. We also assess the capacity of the systems to integrate information. We find that high-synergy systems are unstable and chaotic, but with a high capacity to integrate information. In contrast, evolved redundant systems are extremely stable, but have negligible capacity to integrate information. Finally, the complex systems that balance integration and segregation (known as Tononi-Sporns-Edelman complexity) show features of both chaosticity and stability, with a greater capacity to integrate information than the redundant systems while being more stable than the random and synergistic systems. We conclude that there may be a fundamental trade-off between the robustness of a systems dynamics and its capacity to integrate information (which inherently requires flexibility and sensitivity), and that certain kinds of complexity naturally balance this trade-off.

A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.

In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.

Epilepsy is a clinical neurological disorder characterized by recurrent and spontaneous seizures consisting of abnormal high-frequency electrical activity in the brain. In this condition, the transmembrane potential dynamics are characterized by rapid and sharp wavefronts traveling along the heterogeneous and anisotropic conduction pathways of the brain. This work employs the monodomain model, coupled with specific neuronal ionic models characterizing ion concentration dynamics, to mathematically describe brain tissue electrophysiology in grey and white matter at the organ scale. This multiscale model is discretized in space with the high-order discontinuous Galerkin method on polygonal and polyhedral grids (PolyDG) and advanced in time with a Crank-Nicolson scheme. This ensures, on the one hand, efficient and accurate simulations of the high-frequency electrical activity that is responsible for epileptic seizure and, on the other hand, keeps reasonably low the computational costs by a suitable combination of high-order approximations and agglomerated polytopal meshes. We numerically investigate synthetic test cases on a two-dimensional heterogeneous squared domain discretized with a polygonal grid, and on a two-dimensional brainstem in a sagittal plane with an agglomerated polygonal grid that takes full advantage of the flexibility of the PolyDG approximation of the semidiscrete formulation. Finally, we provide a theoretical analysis of stability and an a-priori convergence analysis for a simplified mathematical problem.

We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.

We study two numerical approximations of solutions of nonlocal diffusion evolution problems which are inspired in algorithms for computing the bilateral denoising filtering of an image, and which are based on functional rearrangements and on the Fourier transform. Apart from the usual time-space discretization, these algorithms also use the discretization of the range of the solution (quantization). We show that the discrete approximations converge to the continuous solution in suitable functional spaces, and provide error estimates. Finally, we present some numerical experiments illustrating the performance of the algorithms, specially focusing in the execution time.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

The SINDy algorithm has been successfully used to identify the governing equations of dynamical systems from time series data. However, SINDy assumes the user has prior knowledge of the variables in the system and of a function library that can act as a basis for the system. In this paper, we demonstrate on real world data how the Augmented SINDy algorithm outperforms SINDy in the presence of system variable uncertainty. We then show SINDy can be further augmented to perform robustly when both kinds of uncertainty are present.

北京阿比特科技有限公司