亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

相關內容

視覺問(wen)(wen)答(da)(Visual Question Answering,VQA),是(shi)一種(zhong)涉(she)及計算機視覺和自(zi)然語(yu)言處(chu)理的(de)學習任務。這(zhe)一任務的(de)定義如下(xia): A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為(wei)中文:一個VQA系(xi)統以一張(zhang)圖(tu)片(pian)(pian)和一個關于這(zhe)張(zhang)圖(tu)片(pian)(pian)形式自(zi)由、開(kai)放式的(de)自(zi)然語(yu)言問(wen)(wen)題作為(wei)輸(shu)(shu)入,以生(sheng)成一條自(zi)然語(yu)言答(da)案作為(wei)輸(shu)(shu)出。簡(jian)單(dan)來(lai)說,VQA就(jiu)是(shi)給(gei)定的(de)圖(tu)片(pian)(pian)進行(xing)問(wen)(wen)答(da)。

知識薈萃

精品入門(men)和(he)(he)進階(jie)教程(cheng)、論文和(he)(he)代碼整理(li)等

更多

查看相關VIP內容、論文(wen)、資訊(xun)等

In order to answer semantically-complicated questions about an image, a Visual Question Answering (VQA) model needs to fully understand the visual scene in the image, especially the interactive dynamics between different objects. We propose a Relation-aware Graph Attention Network (ReGAT), which encodes each image into a graph and models multi-type inter-object relations via a graph attention mechanism, to learn question-adaptive relation representations. Two types of visual object relations are explored: (i) Explicit Relations that represent geometric positions and semantic interactions between objects; and (ii) Implicit Relations that capture the hidden dynamics between image regions. Experiments demonstrate that ReGAT outperforms prior state-of-the-art approaches on both VQA 2.0 and VQA-CP v2 datasets. We further show that ReGAT is compatible to existing VQA architectures, and can be used as a generic relation encoder to boost the model performance for VQA.

The Visual Question Answering (VQA) task combines challenges for processing data with both Visual and Linguistic processing, to answer basic `common sense' questions about given images. Given an image and a question in natural language, the VQA system tries to find the correct answer to it using visual elements of the image and inference gathered from textual questions. In this survey, we cover and discuss the recent datasets released in the VQA domain dealing with various types of question-formats and enabling robustness of the machine-learning models. Next, we discuss about new deep learning models that have shown promising results over the VQA datasets. At the end, we present and discuss some of the results computed by us over the vanilla VQA models, Stacked Attention Network and the VQA Challenge 2017 winner model. We also provide the detailed analysis along with the challenges and future research directions.

Question Answering has recently received high attention from artificial intelligence communities due to the advancements in learning technologies. Early question answering models used rule-based approaches and moved to the statistical approach to address the vastly available information. However, statistical approaches are shown to underperform in handling the dynamic nature and the variation of language. Therefore, learning models have shown the capability of handling the dynamic nature and variations in language. Many deep learning methods have been introduced to question answering. Most of the deep learning approaches have shown to achieve higher results compared to machine learning and statistical methods. The dynamic nature of language has profited from the nonlinear learning in deep learning. This has created prominent success and a spike in work on question answering. This paper discusses the successes and challenges in question answering question answering systems and techniques that are used in these challenges.

Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.

In this work, we present novel methods to adapt visual QA models for community QA tasks of practical significance - automated question category classification and finding experts for question answering - on questions containing both text and image. To the best of our knowledge, this is the first work to tackle the multimodality challenge in CQA, and is an enabling step towards basic question-answering on image-based CQA. First, we analyze the differences between visual QA and community QA datasets, discussing the limitations of applying VQA models directly to CQA tasks, and then we propose novel augmentations to VQA-based models to best address those limitations. Our model, with the augmentations of an image-text combination method tailored for CQA and use of auxiliary tasks for learning better grounding features, significantly outperforms the text-only and VQA model baselines for both tasks on real-world CQA data from Yahoo! Chiebukuro, a Japanese counterpart of Yahoo! Answers.

Visual Question answering is a challenging problem requiring a combination of concepts from Computer Vision and Natural Language Processing. Most existing approaches use a two streams strategy, computing image and question features that are consequently merged using a variety of techniques. Nonetheless, very few rely on higher level image representations, which allow to capture semantic and spatial relationships. In this paper, we propose a novel graph-based approach for Visual Question Answering. Our method combines a graph learner module, which learns a question specific graph representation of the input image, with the recent concept of graph convolutions, aiming to learn image representations that capture question specific interactions. We test our approach on the VQA v2 dataset using a simple baseline architecture enhanced by the proposed graph learner module. We obtain state of the art results with 65.77% accuracy and demonstrate the interpretability of the proposed method.

Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better performance. However, not all localized parts are beneficial and indispensable for classification, and the setting for number of part detectors relies heavily on prior knowledge as well as experimental results. As is known to all, when we describe the object of an image into text via natural language, we only focus on the pivotal characteristics, and rarely pay attention to common characteristics as well as the background areas. This is an involuntary transfer from human visual attention to textual attention, which leads to the fact that textual attention tells us how many and which parts are discriminative and significant. So textual attention of natural language descriptions could help us to discover visual attention in image. Inspired by this, we propose a visual-textual attention driven fine-grained representation learning (VTA) approach, and its main contributions are: (1) Fine-grained visual-textual pattern mining devotes to discovering discriminative visual-textual pairwise information for boosting classification through jointly modeling vision and text with generative adversarial networks (GANs), which automatically and adaptively discovers discriminative parts. (2) Visual-textual representation learning jointly combine visual and textual information, which preserves the intra-modality and inter-modality information to generate complementary fine-grained representation, and further improve classification performance. Experiments on the two widely-used datasets demonstrate the effectiveness of our VTA approach, which achieves the best classification accuracy.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Questions that require counting a variety of objects in images remain a major challenge in visual question answering (VQA). The most common approaches to VQA involve either classifying answers based on fixed length representations of both the image and question or summing fractional counts estimated from each section of the image. In contrast, we treat counting as a sequential decision process and force our model to make discrete choices of what to count. Specifically, the model sequentially selects from detected objects and learns interactions between objects that influence subsequent selections. A distinction of our approach is its intuitive and interpretable output, as discrete counts are automatically grounded in the image. Furthermore, our method outperforms the state of the art architecture for VQA on multiple metrics that evaluate counting.

北京阿比特科技有限公司