亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the past 50 years, Nelson algebras have been extensively studied by distinguished scholars as the algebraic counterpart of Nelson's constructive logic with strong negation. Despite these studies, a comprehensive survey of the topic is currently lacking, and the theory of Nelson algebras remains largely unknown to most logicians. This paper aims to fill this gap by focussing on the essential developments in the field over the past two decades. Additionally, we explore generalisations of Nelson algebras, such as N4-lattices which correspond to the paraconsistent version of Nelson's logic, as well as their applications to other areas of interest to logicians, such as duality and rough set theory. A general representation theorem states that each Nelson algebra is isomorphic to a subalgebra of a rough set-based Nelson algebra induced by a quasiorder. Furthermore, a formula is a theorem of Nelson logic if and only if it is valid in every finite Nelson algebra induced by a quasiorder.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Categorical variables are of uttermost importance in biomedical research. When two of them are considered, it is often the case that one wants to test whether or not they are statistically dependent. We show weaknesses of classical methods -- such as Pearson's and the G-test -- and we propose testing strategies based on distances that lack those drawbacks. We first develop this theory for classical two-dimensional contingency tables, within the context of distance covariance, an association measure that characterises general statistical independence of two variables. We then apply the same fundamental ideas to one-dimensional tables, namely to the testing for goodness of fit to a discrete distribution, for which we resort to an analogous statistic called energy distance. We prove that our methodology has desirable theoretical properties, and we show how we can calibrate the null distribution of our test statistics without resorting to any resampling technique. We illustrate all this in simulations, as well as with some real data examples, demonstrating the adequate performance of our approach for biostatistical practice.

As the most fundamental problem in statistics, robust location estimation has many prominent solutions, such as the trimmed mean, Winsorized mean, Hodges Lehmann estimator, Huber M estimator, and median of means. Recent studies suggest that their maximum biases concerning the mean can be quite different, but the underlying mechanisms largely remain unclear. This study exploited a semiparametric method to classify distributions by the asymptotic orderliness of quantile combinations with varying breakdown points, showing their interrelations and connections to parametric distributions. Further deductions explain why the Winsorized mean typically has smaller biases compared to the trimmed mean; two sequences of semiparametric robust mean estimators emerge, particularly highlighting the superiority of the median Hodges Lehmann mean. This article sheds light on the understanding of the common nature of probability distributions.

In recent years, the dominant accuracy metric for vector search is the recall of a result list of fixed size (top-k retrieval), considering as ground truth the exact vector retrieval results. Although convenient to compute, this metric is distantly related to the end-to-end accuracy of a full system that integrates vector search. In this paper we focus on the common case where a hard decision needs to be taken depending on the vector retrieval results, for example, deciding whether a query image matches a database image or not. We solve this as a range search task, where all vectors within a certain radius from the query are returned. We show that the value of a range search result can be modeled rigorously based on the query-to-vector distance. This yields a metric for range search, RSM, that is both principled and easy to compute without running an end-to-end evaluation. We apply this metric to the case of image retrieval. We show that indexing methods that are adapted for top-k retrieval do not necessarily maximize the RSM. In particular, for inverted file based indexes, we show that visiting a limited set of clusters and encoding vectors compactly yields near optimal results.

We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.

Motivated by a heat radiative transport equation, we consider a particle undergoing collisions in a space-time domain and propose a method to sample its escape time, space and direction from the domain. The first step of the procedure is an estimation of how many elementary collisions is safe to take before chances of exiting the domain are too high; then these collisions are aggregated into a single movement. The method does not use any model nor any particular regime of parameters. We give theoretical results both under the normal approximation and without it and test the method on some benchmarks from the literature. The results confirm the theoretical predictions and show that the proposal is an efficient method to sample the escape distribution of the particle.

We provide more sample-efficient versions of some basic routines in quantum data analysis, along with simpler proofs. Particularly, we give a quantum "Threshold Search" algorithm that requires only $O((\log^2 m)/\epsilon^2)$ samples of a $d$-dimensional state $\rho$. That is, given observables $0 \le A_1, A_2, ..., A_m \le 1$ such that $\mathrm{tr}(\rho A_i) \ge 1/2$ for at least one $i$, the algorithm finds $j$ with $\mathrm{tr}(\rho A_j) \ge 1/2-\epsilon$. As a consequence, we obtain a Shadow Tomography algorithm requiring only $\tilde{O}((\log^2 m)(\log d)/\epsilon^4)$ samples, which simultaneously achieves the best known dependence on each parameter $m$, $d$, $\epsilon$. This yields the same sample complexity for quantum Hypothesis Selection among $m$ states; we also give an alternative Hypothesis Selection method using $\tilde{O}((\log^3 m)/\epsilon^2)$ samples.

In recent years, power analysis has become widely used in applied sciences, with the increasing importance of the replicability issue. When distribution-free methods, such as Partial Least Squares (PLS)-based approaches, are considered, formulating power analysis turns out to be challenging. In this study, we introduce the methodological framework of a new procedure for performing power analysis when PLS-based methods are used. Data are simulated by the Monte Carlo method, assuming the null hypothesis of no effect is false and exploiting the latent structure estimated by PLS in the pilot data. In this way, the complex correlation data structure is explicitly considered in power analysis and sample size estimation. The paper offers insights into selecting statistical tests for the power analysis procedure, comparing accuracy-based tests and those based on continuous parameters estimated by PLS. Simulated and real datasets are investigated to show how the method works in practice.

In this thesis, we study problems at the interface of analysis and discrete mathematics. We discuss analogues of well known Hardy-type inequalities and Rearrangement inequalities on the lattice graphs $\mathbb{Z}^d$, with a particular focus on behaviour of sharp constants and optimizers.In the first half of the thesis, we analyse Hardy inequalities on $\mathbb{Z}^d$, first for $d=1$ and then for $d \geq 3$. We prove a sharp weighted Hardy inequality on integers with power weights of the form $n^\alpha$. This is done via two different methods, namely super-solution and Fourier method. We also use Fourier method to prove a weighted Hardy type inequality for higher order operators. After discussing the one dimensional case, we study the Hardy inequality in higher dimensions ($d \geq 3$). In particular, we compute the asymptotic behaviour of the sharp constant in the discrete Hardy inequality, as $d \rightarrow \infty$. This is done by converting the inequality into a continuous Hardy-type inequality on a torus for functions having zero average. These continuous inequalities are new and interesting in themselves. In the second half, we focus our attention on analogues of Rearrangement inequalities on lattice graphs. We begin by analysing the situation in dimension one. We define various notions of rearrangements and prove the corresponding Polya-Szeg\H{o} inequality. These inequalities are also applied to prove some weighted Hardy inequalities on integers. Finally, we study Rearrangement inequalities (Polya-Szeg\H{o}) on general graphs, with a particular focus on lattice graphs $\mathbb{Z}^d$, for $d \geq 2$. We develop a framework to study these inequalities, using which we derive concrete results in dimension two. In particular, these results develop connections between Polya-Szeg\H{o} inequality and various isoperimetric inequalities on graphs.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

北京阿比特科技有限公司