亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Boundary integral equation formulations of elliptic partial differential equations lead to dense system matrices when discretized, yet they are data-sparse. Using the $\mathcal{H}$-matrix format, this sparsity is exploited to achieve $\mathcal{O}(N\log N)$ complexity for storage and multiplication by a vector. This is achieved purely algebraically, based on low-rank approximations of subblocks, and hence the format is also applicable to a wider range of problems. The $\mathcal{H}^2$-matrix format improves the complexity to $\mathcal{O}(N)$ by introducing a recursive structure onto subblocks on multiple levels. However, in practice this comes with a large proportionality constant, making the $\mathcal{H}^2$-matrix format advantageous mostly for large problems. In this paper we investigate the usefulness of a matrix format that lies in between these two: Uniform $\mathcal{H}$-matrices. An algebraic compression algorithm is introduced to transform a regular $\mathcal{H}$-matrix into a uniform $\mathcal{H}$-matrix, which maintains the asymptotic complexity.

相關內容

We analyze the anti-symmetric properties of a spectral discretization for the one-dimensional Vlasov-Poisson equations. The discretization is based on a spectral expansion in velocity with the symmetrically weighted Hermite basis functions, central finite differencing in space, and an implicit Runge Kutta integrator in time. The proposed discretization preserves the anti-symmetric structure of the advection operator in the Vlasov equation, resulting in a stable numerical method. We apply such discretization to two formulations: the canonical Vlasov-Poisson equations and their continuously transformed square-root representation. The latter preserves the positivity of the particle distribution function. We derive analytically the conservation properties of both formulations, including particle number, momentum, and energy, which are verified numerically on the following benchmark problems: manufactured solution, linear and nonlinear Landau damping, two-stream instability, bump-on-tail instability, and ion-acoustic wave.

In this class notes students can learn how B specifications can be translated into $\{log$\}$ forgrams, how these forgrams can be executed and how they can be proved to verify some properties.

The $\ell_p$ subspace approximation problem is an NP-hard low rank approximation problem that generalizes the median hyperplane problem ($p = 1$), principal component analysis ($p = 2$), and the center hyperplane problem ($p = \infty$). A popular approach to cope with the NP-hardness of this problem is to compute a strong coreset, which is a small weighted subset of the input points which simultaneously approximates the cost of every $k$-dimensional subspace, typically to $(1+\varepsilon)$ relative error for a small constant $\varepsilon$. We obtain the first algorithm for constructing a strong coreset for $\ell_p$ subspace approximation with a nearly optimal dependence on the rank parameter $k$, obtaining a nearly linear bound of $\tilde O(k)\mathrm{poly}(\varepsilon^{-1})$ for $p<2$ and $\tilde O(k^{p/2})\mathrm{poly}(\varepsilon^{-1})$ for $p>2$. Prior constructions either achieved a similar size bound but produced a coreset with a modification of the original points [SW18, FKW21], or produced a coreset of the original points but lost $\mathrm{poly}(k)$ factors in the coreset size [HV20, WY23]. Our techniques also lead to the first nearly optimal online strong coresets for $\ell_p$ subspace approximation with similar bounds as the offline setting, resolving a problem of [WY23]. All prior approaches lose $\mathrm{poly}(k)$ factors in this setting, even when allowed to modify the original points.

Deep neural network approximation of nonlinear operators, commonly referred to as DeepONet, has proven capable of approximating PDE backstepping designs in which a single Goursat-form PDE governs a single feedback gain function. In boundary control of coupled PDEs, coupled Goursat-form PDEs govern two or more gain kernels-a PDE structure unaddressed thus far with DeepONet. In this paper, we explore the subject of approximating systems of gain kernel PDEs for hyperbolic PDE plants by considering a simple counter-convecting $2\times 2$ coupled system in whose control a $2\times 2$ kernel PDE system in Goursat form arises. Engineering applications include oil drilling, the Saint-Venant model of shallow water waves, and the Aw-Rascle-Zhang model of stop-and-go instability in congested traffic flow. We establish the continuity of the mapping from a total of five plant PDE functional coefficients to the kernel PDE solutions, prove the existence of an arbitrarily close DeepONet approximation to the kernel PDEs, and ensure that the DeepONet-approximated gains guarantee stabilization when replacing the exact backstepping gain kernels. Taking into account anti-collocated boundary actuation and sensing, our $L^2$-Globally-exponentially stabilizing (GES) approximate gain kernel-based output feedback design implies the deep learning of both the controller's and the observer's gains. Moreover, the encoding of the output-feedback law into DeepONet ensures semi-global practical exponential stability (SG-PES). The DeepONet operator speeds up the computation of the controller gains by multiple orders of magnitude. Its theoretically proven stabilizing capability is demonstrated through simulations.

Estimating parameters of functional ARMA, GARCH and invertible processes requires estimating lagged covariance and cross-covariance operators of Cartesian product Hilbert space-valued processes. Asymptotic results have been derived in recent years, either less generally or under a strict condition. This article derives upper bounds of the estimation errors for such operators based on the mild condition Lp-m-approximability for each lag, Cartesian power(s) and sample size, where the two processes can take values in different spaces in the context of lagged cross-covariance operators. Implications of our results on eigenelements, parameters in functional AR(MA) models and other general situations are also discussed.

We present fully abstract encodings of the call-by-name and call-by-value $\lambda$-calculus into HOcore, a minimal higher-order process calculus with no name restriction. We consider several equivalences on the $\lambda$-calculus side -- normal-form bisimilarity, applicative bisimilarity, and contextual equivalence -- that we internalize into abstract machines in order to prove full abstraction of the encodings. We also demonstrate that this technique scales to the $\lambda\mu$-calculus, i.e., a standard extension of the $\lambda$-calculus with control operators.

We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.

We provide numerical evidence for a potential finite-time self-similar singularity of the 3D axisymmetric Euler equations with no swirl and with $C^\alpha$ initial vorticity for a large range of $\alpha$. We employ a highly effective adaptive mesh method to resolve the potential singularity sufficiently close to the potential blow-up time. Resolution study shows that our numerical method is at least second-order accurate. Scaling analysis and the dynamic rescaling method are presented to quantitatively study the scaling properties of the potential singularity. We demonstrate that this potential blow-up is stable with respect to the perturbation of initial data. Our numerical study shows that the 3D axisymmetric Euler equations with our initial data develop finite-time blow-up when the H\"older exponent $\alpha$ is smaller than some critical value $\alpha^*$, which has the potential to be $1/3$. We also study the $n$-dimensional axisymmetric Euler equations with no swirl, and observe that the critical H\"older exponent $\alpha^*$ is close to $1-\frac{2}{n}$. Compared with Elgindi's blow-up result in a similar setting \cite{elgindi2021finite}, our potential blow-up scenario has a different H\"older continuity property in the initial data and the scaling properties of the two initial data are also quite different. We also propose a relatively simple one-dimensional model and numerically verify its approximation to the $n$-dimensional axisymmetric Euler equations. This one-dimensional model sheds useful light to our understanding of the blow-up mechanism for the $n$-dimensional Euler equations.

The conditions for cubic equations, to have 3 real roots and 2 of the roots lie in the closed interval $[-1, 1]$ are given. These conditions are visualized. This question arises in physics in e.g. the theory of tops.

Structure-preserving particle methods have recently been proposed for a class of nonlinear continuity equations, including aggregation-diffusion equation in [J. Carrillo, K. Craig, F. Patacchini, Calc. Var., 58 (2019), pp. 53] and the Landau equation in [J. Carrillo, J. Hu., L. Wang, J. Wu, J. Comput. Phys. X, 7 (2020), pp. 100066]. One common feature to these equations is that they both admit some variational formulation, which upon proper regularization, leads to particle approximations dissipating the energy and conserving some quantities simultaneously at the semi-discrete level. In this paper, we formulate continuity equations with a density dependent bilinear form associated with the variational derivative of the energy functional and prove that appropriate particle methods satisfy a compatibility condition with its regularized energy. This enables us to utilize discrete gradient time integrators and show that the energy can be dissipated and the mass conserved simultaneously at the fully discrete level. In the case of the Landau equation, we prove that our approach also conserves the momentum and kinetic energy at the fully discrete level. Several numerical examples are presented to demonstrate the dissipative and conservative properties of our proposed method.

北京阿比特科技有限公司