Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at //github.com/WeixiangYAN/CodeScope.
Large Language Models (LLMs) are composed of neurons that exhibit various behaviors and roles, which become increasingly diversified as models scale. Recent studies have revealed that not all neurons are active across different datasets, and this sparsity correlates positively with the task-specific ability, leading to advancements in model pruning and training efficiency. Traditional fine-tuning methods engage all parameters of LLMs, which is computationally expensive and may not be necessary. In contrast, Parameter-Efficient Fine-Tuning (PEFT) approaches aim to minimize the number of trainable parameters, yet they still operate at a relatively macro scale (e.g., layer-level). We introduce Neuron-Level Fine-Tuning (NeFT), a novel approach that refines the granularity of parameter training down to the individual neuron, enabling more precise and computationally efficient model updates. The experimental results show that NeFT not only exceeded the performance of full-parameter fine-tuning and PEFT but also provided insights into the analysis of neurons.
Large Language Models (LLMs) demonstrate superior performance in generative scenarios and have attracted widespread attention. Among them, stylized dialogue generation is essential in the context of LLMs for building intelligent and engaging dialogue agent. However the ability of LLMs is data-driven and limited by data bias, leading to poor performance on specific tasks. In particular, stylized dialogue generation suffers from a severe lack of supervised data. Furthermore, although many prompt-based methods have been proposed to accomplish specific tasks, their performance in complex real-world scenarios involving a wide variety of dialog styles further enhancement. In this work, we first introduce a stylized dialogue dataset StyleEval with 38 styles by leveraging the generative power of LLMs comprehensively, which has been carefully constructed with rigorous human-led quality control. Based on this, we propose the stylized dialogue framework StyleChat via recitation-augmented memory strategy and multi-task style learning strategy to promote generalization ability. To evaluate the effectiveness of our approach, we created a test benchmark that included both a generation task and a choice task to comprehensively evaluate trained models and assess whether styles and preferences are remembered and understood. Experimental results show that our proposed framework StyleChat outperforms all the baselines and helps to break the style boundary of LLMs.
Large Language Models (LLMs) have demonstrated remarkable progress in utilizing tools, but their closed-source nature and high inference costs pose limitations on their adaptability, necessitating a valid method that leverages smaller, open-sourced models. In this paper, we introduce Toolink, a comprehensive framework that performs task-solving by first creating a toolkit and then integrating the planning and calling of tools through a chain-of-solving (CoS) approach. We first validate the efficacy of Toolink in harnessing the model's creativity and CoS ability on ChatGPT. Subsequently, we curate CoS-GPT, a chain-of-solving dataset designed for tool-using, and finetune the LLaMA-7B model. It results in LLaMA-CoS, a powerful open-source model with advanced tool-planning and tool-calling capabilities. Evaluation of diverse tasks from BIG-bench demonstrates its CoS ability matches that of ChatGPT while its performance surpasses the chain-of-thought approach. Further studies highlight the generalization of LLaMA-CoS to unseen tasks and showcase its capability in using toolkits not explicitly tailored for the target task, affirming its robustness in real-world scenarios.
Recent advancements in Graph Neural Networks (GNN) have facilitated their widespread adoption in various applications, including recommendation systems. GNNs have proven to be effective in addressing the challenges posed by recommendation systems by efficiently modeling graphs in which nodes represent users or items and edges denote preference relationships. However, current GNN techniques represent nodes by means of a single static vector, which may inadequately capture the intricate complexities of users and items. To overcome these limitations, we propose a solution integrating a cutting-edge model inspired by category theory: Sheaf4Rec. Unlike single vector representations, Sheaf Neural Networks and their corresponding Laplacians represent each node (and edge) using a vector space. Our approach takes advantage from this theory and results in a more comprehensive representation that can be effectively exploited during inference, providing a versatile method applicable to a wide range of graph-related tasks and demonstrating unparalleled performance. Our proposed model exhibits a noteworthy relative improvement of up to 8.53% on F1-Score@10 and an impressive increase of up to 11.29% on NDCG@10, outperforming existing state-of-the-art models such as Neural Graph Collaborative Filtering (NGCF), KGTORe and other recently developed GNN-based models. In addition to its superior predictive capabilities, Sheaf4Rec shows remarkable improvements in terms of efficiency: we observe substantial runtime improvements ranging from 2.5% up to 37% when compared to other GNN-based competitor models, indicating a more efficient way of handling information while achieving better performance. Code is available at //github.com/antoniopurificato/Sheaf4Rec.
A novel method, the Pareto Envelope Augmented with Reinforcement Learning (PEARL), has been developed to address the challenges posed by multi-objective problems, particularly in the field of engineering where the evaluation of candidate solutions can be time-consuming. PEARL distinguishes itself from traditional policy-based multi-objective Reinforcement Learning methods by learning a single policy, eliminating the need for multiple neural networks to independently solve simpler sub-problems. Several versions inspired from deep learning and evolutionary techniques have been crafted, catering to both unconstrained and constrained problem domains. Curriculum Learning is harnessed to effectively manage constraints in these versions. PEARL's performance is first evaluated on classical multi-objective benchmarks. Additionally, it is tested on two practical PWR core Loading Pattern optimization problems to showcase its real-world applicability. The first problem involves optimizing the Cycle length and the rod-integrated peaking factor as the primary objectives, while the second problem incorporates the mean average enrichment as an additional objective. Furthermore, PEARL addresses three types of constraints related to boron concentration, peak pin burnup, and peak pin power. The results are systematically compared against conventional approaches. Notably, PEARL, specifically the PEARL-NdS variant, efficiently uncovers a Pareto front without necessitating additional efforts from the algorithm designer, as opposed to a single optimization with scaled objectives. It also outperforms the classical approach across multiple performance metrics, including the Hyper-volume.
Large Language Models (LLM) have demonstrated their strong ability in the field of machine translation (MT), yet they suffer from high computational cost and latency. Therefore, transferring translation knowledge from giant LLMs to medium-sized machine translation models is a promising research direction. However, traditional knowledge distillation methods do not take the capability of student and teacher models into consideration, therefore repeatedly teaching student models on the knowledge they have learned, and failing to extend to novel contexts and knowledge. In this paper, we propose a framework called MT-Patcher, which transfers knowledge from LLMs to existing MT models in a selective, comprehensive and proactive manner. Considering the current translation ability of student MT models, we only identify and correct their translation errors, instead of distilling the whole translation from the teacher. Leveraging the strong language abilities of LLMs, we instruct LLM teachers to synthesize diverse contexts and anticipate more potential errors for the student. Experiment results on translating both specific language phenomena and general MT benchmarks demonstrate that finetuning the student MT model on about 10% examples can achieve comparable results to the traditional knowledge distillation method, and synthesized potential errors and diverse contexts further improve translation performances on unseen contexts and words.
We propose an objective intelligibility measure (OIM), called the Gammachirp Envelope Similarity Index (GESI), which can predict the speech intelligibility (SI) of simulated hearing loss (HL) sounds for normal hearing (NH) listeners. GESI is an intrusive method that computes the SI metric using the gammachirp filterbank (GCFB), the modulation filterbank, and the extended cosine similarity measure. The unique features of GESI are that i) it reflects the hearing impaired (HI) listener's HL that appears in the audiogram and is caused by active and passive cochlear dysfunction, ii) it provides a single goodness metric, as in the widely used STOI and ESTOI, that can be used immediately to evaluate SE algorithms, and iii) it provides a simple control parameter to accept the level asymmetry of the reference and test sounds and to deal with individual listening conditions and environments. We evaluated GESI and the conventional OIMs, STOI, ESTOI, MBSTOI, and HASPI versions 1 and 2 by using four SI experiments on words of male and female speech sounds in both laboratory and remote environments. GESI was shown to outperform the other OIMs in the evaluations. GESI could be used to improve SE algorithms in assistive listening devices for individual HI listeners.
The development of Large Language Models (LLMs) often confronts challenges stemming from the heavy reliance on human annotators in the reinforcement learning with human feedback (RLHF) framework, or the frequent and costly external queries tied to the self-instruct paradigm. In this work, we pivot to Reinforcement Learning (RL) -- but with a twist. Diverging from the typical RLHF, which refines LLMs following instruction data training, we use RL to directly generate the foundational instruction dataset that alone suffices for fine-tuning. Our method, TeaMs-RL, uses a suite of textual operations and rules, prioritizing the diversification of training datasets. It facilitates the generation of high-quality data without excessive reliance on external advanced models, paving the way for a single fine-tuning step and negating the need for subsequent RLHF stages. Our findings highlight key advantages of our approach: reduced need for human involvement and fewer model queries (only $5.73\%$ of WizardLM's total), along with enhanced capabilities of LLMs in crafting and comprehending complex instructions compared to strong baselines, and substantially improved model privacy protection.
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github.com/sail-sg/lm-random-memory-access.
One of the ways Large Language Models (LLMs) are used to perform machine learning tasks is to provide them with a few examples before asking them to produce a prediction. This is a meta-learning process known as few-shot learning. In this paper, we use available Search-Based methods to optimise the number and combination of examples that can improve an LLM's estimation performance, when it is used to estimate story points for new agile tasks. Our preliminary results show that our SBSE technique improves the estimation performance of the LLM by 59.34% on average (in terms of mean absolute error of the estimation) over three datasets against a zero-shot setting.