We introduce and study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer $\mathbf{x}^{*}$ for a function $f\colon X \to \mathbb{R}$, where $X \subseteq \mathbb{R}^d$. In each round, the algorithm submits a pair of guesses, i.e., $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worse of the two guesses; i.e., ${\max} \left( f(\mathbf{x}^{(1)}), f(\mathbf{x}^{(2)}) \right) - f(\mathbf{x}^{*})$. The goal is to minimize the number of iterations required to find an $\varepsilon$-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function $f$ and set $X$ that incurs cost $O(d)$ and iteration complexity $O(d\log(1/\varepsilon)^2)$. Moreover, our dependence on $d$ is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur $\Omega(d)$ cost and iteration complexity.
Score Distillation Sampling (SDS) is a recent but already widely popular method that relies on an image diffusion model to control optimization problems using text prompts. In this paper, we conduct an in-depth analysis of the SDS loss function, identify an inherent problem with its formulation, and propose a surprisingly easy but effective fix. Specifically, we decompose the loss into different factors and isolate the component responsible for noisy gradients. In the original formulation, high text guidance is used to account for the noise, leading to unwanted side effects. Instead, we train a shallow network mimicking the timestep-dependent denoising deficiency of the image diffusion model in order to effectively factor it out. We demonstrate the versatility and the effectiveness of our novel loss formulation through several qualitative and quantitative experiments, including optimization-based image synthesis and editing, zero-shot image translation network training, and text-to-3D synthesis.
We consider the task of identifying the causal parents of a target variable among a set of candidate variables from observational data. Our main assumption is that the candidate variables are observed in different environments which may, for example, correspond to different settings of a machine or different time intervals in a dynamical process. Under certain assumptions different environments can be regarded as interventions on the observed system. We assume a linear relationship between target and covariates, which can be different in each environment with the only restriction that the causal structure is invariant across environments. This is an extension of the ICP ($\textbf{I}$nvariant $\textbf{C}$ausal $\textbf{P}$rediction) principle by Peters et al. [2016], who assumed a fixed linear relationship across all environments. Within our proposed setting we provide sufficient conditions for identifiability of the causal parents and introduce a practical method called LoLICaP ($\textbf{Lo}$cally $\textbf{L}$inear $\textbf{I}$nvariant $\textbf{Ca}$usal $\textbf{P}$rediction), which is based on a hypothesis test for parent identification using a ratio of minimum and maximum statistics. We then show in a simplified setting that the statistical power of LoLICaP converges exponentially fast in the sample size, and finally we analyze the behavior of LoLICaP experimentally in more general settings.
We propose and study a framework for quantifying the importance of the choices of parameter values to the result of a query over a database. These parameters occur as constants in logical queries, such as conjunctive queries. In our framework, the importance of a parameter is its SHAP score. This score is a popular instantiation of the game-theoretic Shapley value to measuring the importance of feature values in machine learning models. We make the case for the rationale of using this score by explaining the intuition behind SHAP, and by showing that we arrive at this score in two different, apparently opposing, approaches to quantifying the contribution of a parameter. The application of the SHAP score requires two components in addition to the query and the database: (a) a probability distribution over the combinations of parameter values, and (b) a utility function that measures the similarity between the result for the original parameters and the result for hypothetical parameters. The main question addressed in the paper is the complexity of calculating the SHAP score for different distributions and similarity measures. We first address the case of probabilistically independent parameters. The problem is hard if we consider a fragment of queries that is hard to evaluate (as one would expect), and even for the fragment of acyclic conjunctive queries. In some cases, though, one can efficiently list all relevant parameter combinations, and then the SHAP score can be computed in polynomial time under reasonable general conditions. Also tractable is the case of full acyclic conjunctive queries for certain (natural) similarity functions. We extend our results to conjunctive queries with inequalities between variables and parameters. Finally, we discuss a simple approximation technique for the case of correlated parameters.
Cure rate models are mostly used to study data arising from cancer clinical trials. Its use in the context of infectious diseases has not been explored well. In 2008, Tournoud and Ecochard first proposed a mechanistic formulation of cure rate model in the context of infectious diseases with multiple exposures to infection. However, they assumed a simple Poisson distribution to capture the unobserved pathogens at each exposure time. In this paper, we propose a new cure rate model to study infectious diseases with discrete multiple exposures to infection. Our formulation captures both over-dispersion and under-dispersion with respect to the count on pathogens at each time of exposure. We also propose a new estimation method based on the expectation maximization algorithm to calculate the maximum likelihood estimates of the model parameters. We carry out a detailed Monte Carlo simulation study to demonstrate the performance of the proposed model and estimation algorithm. The flexibility of our proposed model also allows us to carry out a model discrimination. For this purpose, we use both likelihood ratio test and information-based criteria. Finally, we illustrate our proposed model using a recently collected data on COVID-19.
The likelihood ratio is a crucial quantity for statistical inference in science that enables hypothesis testing, construction of confidence intervals, reweighting of distributions, and more. Many modern scientific applications, however, make use of data- or simulation-driven models for which computing the likelihood ratio can be very difficult or even impossible. By applying the so-called ``likelihood ratio trick,'' approximations of the likelihood ratio may be computed using clever parametrizations of neural network-based classifiers. A number of different neural network setups can be defined to satisfy this procedure, each with varying performance in approximating the likelihood ratio when using finite training data. We present a series of empirical studies detailing the performance of several common loss functionals and parametrizations of the classifier output in approximating the likelihood ratio of two univariate and multivariate Gaussian distributions as well as simulated high-energy particle physics datasets.
Formalised libraries of combinatorial mathematics have rapidly expanded over the last five years, but few use one of the most important tools: probability. How can often intuitive probabilistic arguments on the existence of combinatorial structures, such as hypergraphs, be translated into a formal text? We present a modular framework using locales in Isabelle/HOL to formalise such probabilistic proofs, including the basic existence method and first formalisation of the Lov\'asz local lemma, a fundamental result in probability. The formalisation focuses on general, reusable formal probabilistic lemmas for combinatorial structures, and highlights several notable gaps in typical intuitive probabilistic reasoning on paper. The applicability of the techniques is demonstrated through the formalisation of several classic lemmas on the existence of hypergraphs with certain colourings.
We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.
The ability to derive useful information by asking clarifying questions (ACQ) is an important element of real life collaboration on reasoning tasks, such as question answering (QA). Existing natural language ACQ challenges, however, evaluate generations based on word overlap rather than the value of the information itself. Word overlap is often an inappropriate metric for question generation since many different questions could be useful in a given situation, and a single question can be phrased many different ways. Instead, we propose evaluating questions pragmatically based on the value of the information they retrieve. Here we present a definition and framework for natural language pragmatic asking of clarifying questions (PACQ), the problem of generating questions that result in answers useful for a reasoning task. We also present fact-level masking (FLM), a procedure for converting natural language datasets into self-supervised PACQ datasets by omitting particular critical facts. Finally, we generate a PACQ dataset from the HotpotQA dataset using FLM and evaluate several zero-shot language models on it. Our experiments show that current zero-shot models struggle to ask questions that retrieve useful information, as compared to human annotators. These results demonstrate an opportunity to use FLM datasets and the PACQ framework to objectively evaluate and improve question generation and other language models.
We study the performance of the spectral method for the phase synchronization problem with additive Gaussian noises and incomplete data. The spectral method utilizes the leading eigenvector of the data matrix followed by a normalization step. We prove that it achieves the minimax lower bound of the problem with a matching leading constant under a squared $\ell_2$ loss. This shows that the spectral method has the same performance as more sophisticated procedures including maximum likelihood estimation, generalized power method, and semidefinite programming, as long as consistent parameter estimation is possible. To establish our result, we first have a novel choice of the population eigenvector, which enables us to establish the exact recovery of the spectral method when there is no additive noise. We then develop a new perturbation analysis toolkit for the leading eigenvector and show it can be well-approximated by its first-order approximation with a small $\ell_2$ error. We further extend our analysis to establish the exact minimax optimality of the spectral method for the orthogonal group synchronization.
Reliable and efficient trajectory optimization methods are a fundamental need for autonomous dynamical systems, effectively enabling applications including rocket landing, hypersonic reentry, spacecraft rendezvous, and docking. Within such safety-critical application areas, the complexity of the emerging trajectory optimization problems has motivated the application of AI-based techniques to enhance the performance of traditional approaches. However, current AI-based methods either attempt to fully replace traditional control algorithms, thus lacking constraint satisfaction guarantees and incurring in expensive simulation, or aim to solely imitate the behavior of traditional methods via supervised learning. To address these limitations, this paper proposes the Autonomous Rendezvous Transformer (ART) and assesses the capability of modern generative models to solve complex trajectory optimization problems, both from a forecasting and control standpoint. Specifically, this work assesses the capabilities of Transformers to (i) learn near-optimal policies from previously collected data, and (ii) warm-start a sequential optimizer for the solution of non-convex optimal control problems, thus guaranteeing hard constraint satisfaction. From a forecasting perspective, results highlight how ART outperforms other learning-based architectures at predicting known fuel-optimal trajectories. From a control perspective, empirical analyses show how policies learned through Transformers are able to generate near-optimal warm-starts, achieving trajectories that are (i) more fuel-efficient, (ii) obtained in fewer sequential optimizer iterations, and (iii) computed with an overall runtime comparable to benchmarks based on convex optimization.