亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Similar to the "previously-on" scenes in TV shows, recaps can help book reading by recalling the readers' memory about the important elements in previous texts to better understand the ongoing plot. Despite its usefulness, this application has not been well studied in the NLP community. We propose the first benchmark on this useful task called Recap Snippet Identification with a hand-crafted evaluation dataset. Our experiments show that the proposed task is challenging to PLMs, LLMs, and proposed methods as the task requires a deep understanding of the plot correlation between snippets.

相關內容

In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole. In such a paradigm, humans are found to rarely trigger analytical thinking and face difficulties in communicating the nuances of conflicting opinions to the AI when disagreements occur. To tackle this challenge, we propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making. Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates. To empower AI with deliberative capabilities, we designed Deliberative AI, which leverages large language models (LLMs) as a bridge between humans and domain-specific models to enable flexible conversational interactions and faithful information provision. An exploratory evaluation on a graduate admissions task shows that Deliberative AI outperforms conventional explainable AI (XAI) assistants in improving humans' appropriate reliance and task performance. Based on a mixed-methods analysis of participant behavior, perception, user experience, and open-ended feedback, we draw implications for future AI-assisted decision tool design.

Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at //github.com/zhuyiche/llava-phi.

Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly drawn new test point with a prescribed probability. However, a common scenario in practice is that, after seeing the data, practitioners decide which test unit(s) to focus on in a data-driven manner and seek for uncertainty quantification of the focal unit(s). In such cases, marginally valid conformal prediction intervals may not provide valid coverage for the focal unit(s) due to selection bias. This paper presents a general framework for constructing a prediction set with finite-sample exact coverage conditional on the unit being selected by a given procedure. The general form of our method works for arbitrary selection rules that are invariant to the permutation of the calibration units, and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We then work out the computationally efficient implementation of our framework for a number of realistic selection rules, including top-K selection, optimization-based selection, selection based on conformal p-values, and selection based on properties of preliminary conformal prediction sets. The performance of our methods is demonstrated via applications in drug discovery and health risk prediction.

We present Surf-D, a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies using Diffusion models. Previous methods explored shape generation with different representations and they suffer from limited topologies and poor geometry details. To generate high-quality surfaces of arbitrary topologies, we use the Unsigned Distance Field (UDF) as our surface representation to accommodate arbitrary topologies. Furthermore, we propose a new pipeline that employs a point-based AutoEncoder to learn a compact and continuous latent space for accurately encoding UDF and support high-resolution mesh extraction. We further show that our new pipeline significantly outperforms the prior approaches to learning the distance fields, such as the grid-based AutoEncoder, which is not scalable and incapable of learning accurate UDF. In addition, we adopt a curriculum learning strategy to efficiently embed various surfaces. With the pretrained shape latent space, we employ a latent diffusion model to acquire the distribution of various shapes. Extensive experiments are presented on using Surf-D for unconditional generation, category conditional generation, image conditional generation, and text-to-shape tasks. The experiments demonstrate the superior performance of Surf-D in shape generation across multiple modalities as conditions. Visit our project page at //yzmblog.github.io/projects/SurfD/.

The proliferation of consumer IoT products in our daily lives has raised the need for secure device authentication and access control. Unfortunately, these resource-constrained devices typically use token-based authentication, which is vulnerable to token compromise attacks that allow attackers to impersonate the devices and perform malicious operations by stealing the access token. Using hardware fingerprints to secure their authentication is a promising way to mitigate these threats. However, once attackers have stolen some hardware fingerprints (e.g., via MitM attacks), they can bypass the hardware authentication by training a machine learning model to mimic fingerprints or reusing these fingerprints to craft forge requests. In this paper, we present MCU-Token, a secure hardware fingerprinting framework for MCU-based IoT devices even if the cryptographic mechanisms (e.g., private keys) are compromised. MCU-Token can be easily integrated with various IoT devices by simply adding a short hardware fingerprint-based token to the existing payload. To prevent the reuse of this token, we propose a message mapping approach that binds the token to a specific request via generating the hardware fingerprints based on the request payload. To defeat the machine learning attacks, we mix the valid fingerprints with poisoning data so that attackers cannot train a usable model with the leaked tokens. MCU-Token can defend against armored adversary who may replay, craft, and offload the requests via MitM or use both hardware (e.g., use identical devices) and software (e.g., machine learning attacks) strategies to mimic the fingerprints. The system evaluation shows that MCU-Token can achieve high accuracy (over 97%) with a low overhead across various IoT devices and application scenarios.

This paper explores the pressing issue of risk assessment in Large Language Models (LLMs) as they become increasingly prevalent in various applications. Focusing on how reward models, which are designed to fine-tune pretrained LLMs to align with human values, perceive and categorize different types of risks, we delve into the challenges posed by the subjective nature of preference-based training data. By utilizing the Anthropic Red-team dataset, we analyze major risk categories, including Information Hazards, Malicious Uses, and Discrimination/Hateful content. Our findings indicate that LLMs tend to consider Information Hazards less harmful, a finding confirmed by a specially developed regression model. Additionally, our analysis shows that LLMs respond less stringently to Information Hazards compared to other risks. The study further reveals a significant vulnerability of LLMs to jailbreaking attacks in Information Hazard scenarios, highlighting a critical security concern in LLM risk assessment and emphasizing the need for improved AI safety measures.

We propose a novel approach to video anomaly detection: we treat feature vectors extracted from videos as realizations of a random variable with a fixed distribution and model this distribution with a neural network. This lets us estimate the likelihood of test videos and detect video anomalies by thresholding the likelihood estimates. We train our video anomaly detector using a modification of denoising score matching, a method that injects training data with noise to facilitate modeling its distribution. To eliminate hyperparameter selection, we model the distribution of noisy video features across a range of noise levels and introduce a regularizer that tends to align the models for different levels of noise. At test time, we combine anomaly indications at multiple noise scales with a Gaussian mixture model. Running our video anomaly detector induces minimal delays as inference requires merely extracting the features and forward-propagating them through a shallow neural network and a Gaussian mixture model. Our experiments on five popular video anomaly detection benchmarks demonstrate state-of-the-art performance, both in the object-centric and in the frame-centric setup.

This paper focuses on open-ended video question answering, which aims to find the correct answers from a large answer set in response to a video-related question. This is essentially a multi-label classification task, since a question may have multiple answers. However, due to annotation costs, the labels in existing benchmarks are always extremely insufficient, typically one answer per question. As a result, existing works tend to directly treat all the unlabeled answers as negative labels, leading to limited ability for generalization. In this work, we introduce a simple yet effective ranking distillation framework (RADI) to mitigate this problem without additional manual annotation. RADI employs a teacher model trained with incomplete labels to generate rankings for potential answers, which contain rich knowledge about label priority as well as label-associated visual cues, thereby enriching the insufficient labeling information. To avoid overconfidence in the imperfect teacher model, we further present two robust and parameter-free ranking distillation approaches: a pairwise approach which introduces adaptive soft margins to dynamically refine the optimization constraints on various pairwise rankings, and a listwise approach which adopts sampling-based partial listwise learning to resist the bias in teacher ranking. Extensive experiments on five popular benchmarks consistently show that both our pairwise and listwise RADIs outperform state-of-the-art methods. Further analysis demonstrates the effectiveness of our methods on the insufficient labeling problem.

This review paper explores Multimodal Large Language Models (MLLMs), which integrate Large Language Models (LLMs) like GPT-4 to handle multimodal data such as text and vision. MLLMs demonstrate capabilities like generating image narratives and answering image-based questions, bridging the gap towards real-world human-computer interactions and hinting at a potential pathway to artificial general intelligence. However, MLLMs still face challenges in processing the semantic gap in multimodality, which may lead to erroneous generation, posing potential risks to society. Choosing the appropriate modality alignment method is crucial, as improper methods might require more parameters with limited performance improvement. This paper aims to explore modality alignment methods for LLMs and their existing capabilities. Implementing modality alignment allows LLMs to address environmental issues and enhance accessibility. The study surveys existing modal alignment methods in MLLMs into four groups: (1) Multimodal Converters that change data into something LLMs can understand; (2) Multimodal Perceivers to improve how LLMs perceive different types of data; (3) Tools Assistance for changing data into one common format, usually text; and (4) Data-Driven methods that teach LLMs to understand specific types of data in a dataset. This field is still in a phase of exploration and experimentation, and we will organize and update various existing research methods for multimodal information alignment.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

北京阿比特科技有限公司