亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wearing a mask is one of the important measures to prevent infectious diseases. However, it is difficult to detect people's mask-wearing situation in public places with high traffic flow. To address the above problem, this paper proposes a mask-wearing face detection model based on YOLOv5l. Firstly, Multi-Head Attentional Self-Convolution not only improves the convergence speed of the model but also enhances the accuracy of the model detection. Secondly, the introduction of Swin Transformer Block is able to extract more useful feature information, enhance the detection ability of small targets, and improve the overall accuracy of the model. Our designed I-CBAM module can improve target detection accuracy. In addition, using enhanced feature fusion enables the model to better adapt to object detection tasks of different scales. In the experimentation on the MASK dataset, the results show that the model proposed in this paper achieved a 1.1% improvement in mAP(0.5) and a 1.3% improvement in mAP(0.5:0.95) compared to the YOLOv5l model. Our proposed method significantly enhances the detection capability of mask-wearing.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · CASES · 可辨認的 · Automator · 可約的 ·
2023 年 12 月 1 日

Diabetic retinopathy (DR) is a growing health problem worldwide and is a leading cause of visual impairment and blindness, especially among working people aged 20-65. Its incidence is increasing along with the number of diabetes cases, and it is more common in developed countries than in developing countries. Recent research in the field of diabetic retinopathy diagnosis is using advanced technologies, such as analysis of images obtained by ophthalmoscopy. Automatic methods for analyzing eye images based on neural networks, deep learning and image analysis algorithms can improve the efficiency of diagnosis. This paper describes an automatic DR diagnosis method that includes processing and analysis of ophthalmoscopic images of the eye. It uses morphological algorithms to identify the optic disc and lesions characteristic of DR, such as microaneurysms, hemorrhages and exudates. Automated DR diagnosis has the potential to improve the efficiency of early detection of this disease and contribute to reducing the number of cases of diabetes-related visual impairment. The final step was to create an application with a graphical user interface that allowed retinal images taken at cooperating ophthalmology offices to be uploaded to the server. These images were then analyzed using a developed algorithm to make a diagnosis.

The trace plot is seldom used in meta-analysis, yet it is a very informative plot. In this article we define and illustrate what the trace plot is, and discuss why it is important. The Bayesian version of the plot combines the posterior density of tau, the between-study standard deviation, and the shrunken estimates of the study effects as a function of tau. With a small or moderate number of studies, tau is not estimated with much precision, and parameter estimates and shrunken study effect estimates can vary widely depending on the correct value of tau. The trace plot allows visualization of the sensitivity to tau along with a plot that shows which values of tau are plausible and which are implausible. A comparable frequentist or empirical Bayes version provides similar results. The concepts are illustrated using examples in meta-analysis and meta-regression; implementaton in R is facilitated in a Bayesian or frequentist framework using the bayesmeta and metafor packages, respectively.

While many unsupervised learning models focus on one family of tasks, either generative or discriminative, we explore the possibility of a unified representation learner: a model which addresses both families of tasks simultaneously. We identify diffusion models, a state-of-the-art method for generative tasks, as a prime candidate. Such models involve training a U-Net to iteratively predict and remove noise, and the resulting model can synthesize high-fidelity, diverse, novel images. We find that the intermediate feature maps of the U-Net are diverse, discriminative feature representations. We propose a novel attention mechanism for pooling feature maps and further leverage this mechanism as DifFormer, a transformer feature fusion of features from different diffusion U-Net blocks and noise steps. We also develop DifFeed, a novel feedback mechanism tailored to diffusion. We find that diffusion models are better than GANs, and, with our fusion and feedback mechanisms, can compete with state-of-the-art unsupervised image representation learning methods for discriminative tasks - image classification with full and semi-supervision, transfer for fine-grained classification, object detection and segmentation, and semantic segmentation. Our project website (//mgwillia.github.io/diffssl/) and code (//github.com/soumik-kanad/diffssl) are available publicly.

Studies of the human brain during natural activities, such as locomotion, would benefit from the ability to image deep brain structures during these activities. While Positron Emission Tomography (PET) can image these structures, the bulk and weight of current scanners are not compatible with the desire for a wearable device. This has motivated the design of a robotic system to support a PET imaging system around the subject's head and to move the system to accommodate natural motion. We report here the design and experimental evaluation of a prototype robotic system that senses motion of a subject's head, using parallel string encoders connected between the robot-supported imaging ring and a helmet worn by the subject. This measurement is used to robotically move the imaging ring (coarse motion correction) and to compensate for residual motion during image reconstruction (fine motion correction). Minimization of latency and measurement error are the key design goals, respectively, for coarse and fine motion correction. The system is evaluated using recorded human head motions during locomotion, with a mock imaging system consisting of lasers and cameras, and is shown to provide an overall system latency of about 80 ms, which is sufficient for coarse motion correction and collision avoidance, as well as a measurement accuracy of about 0.5 mm for fine motion correction.

Modeling symptom progression to identify informative subjects for a new Huntington's disease clinical trial is problematic since time to diagnosis, a key covariate, can be heavily censored. Imputation is an appealing strategy where censored covariates are replaced with their conditional means, but existing methods saw over 200% bias under heavy censoring. Calculating these conditional means well requires estimating and then integrating over the survival function of the censored covariate from the censored value to infinity. To estimate the survival function flexibly, existing methods use the semiparametric Cox model with Breslow's estimator, leaving the integrand for the conditional means (the estimated survival function) undefined beyond the observed data. The integral is then estimated up to the largest observed covariate value, and this approximation can cut off the tail of the survival function and lead to severe bias, particularly under heavy censoring. We propose a hybrid approach that splices together the semiparametric survival estimator with a parametric extension, making it possible to approximate the integral up to infinity. In simulation studies, our proposed approach of extrapolation then imputation substantially reduces the bias seen with existing imputation methods, even when the parametric extension was misspecified. We further demonstrate how imputing with corrected conditional means helps to prioritize patients for future clinical trials.

Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization of the latent MAP. In this work, we propose to use compressive autoencoders for latent estimation. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. We then introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs this estimation within the framework of variational inference. This allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.

We consider M-estimators and derive supremal-inequalities of exponential-or polynomial type according as a boundedness- or a moment-condition is fulfilled. This enables us to derive rates of r-complete convergence and also to show r-qick convergence in the sense of Strasser.

Face recognition technology is widely used in the financial field, and various types of liveness attack behaviors need to be addressed. Existing liveness detection algorithms are trained on specific training datasets and tested on testing datasets, but their performance and robustness in transferring to unseen datasets are relatively poor. To tackle this issue, we propose a face liveness detection method based on image-text pairs and contrastive learning, dividing liveness attack problems in the financial field into eight categories and using text information to describe the images of these eight types of attacks. The text encoder and image encoder are used to extract feature vector representations for the classification description text and face images, respectively. By maximizing the similarity of positive samples and minimizing the similarity of negative samples, the model learns shared representations between images and texts. The proposed method is capable of effectively detecting specific liveness attack behaviors in certain scenarios, such as those occurring in dark environments or involving the tampering of ID card photos. Additionally, it is also effective in detecting traditional liveness attack methods, such as printing photo attacks and screen remake attacks. The zero-shot capabilities of face liveness detection on five public datasets, including NUAA, CASIA-FASD, Replay-Attack, OULU-NPU and MSU-MFSD also reaches the level of commercial algorithms. The detection capability of proposed algorithm was verified on 5 types of testing datasets, and the results show that the method outperformed commercial algorithms, and the detection rates reached 100% on multiple datasets. Demonstrating the effectiveness and robustness of introducing image-text pairs and contrastive learning into liveness detection tasks as proposed in this paper.

Prediction models are used amongst others to inform medical decisions on interventions. Typically, individuals with high risks of adverse outcomes are advised to undergo an intervention while those at low risk are advised to refrain from it. Standard prediction models do not always provide risks that are relevant to inform such decisions: e.g., an individual may be estimated to be at low risk because similar individuals in the past received an intervention which lowered their risk. Therefore, prediction models supporting decisions should target risks belonging to defined intervention strategies. Previous works on prediction under interventions assumed that the prediction model was used only at one time point to make an intervention decision. In clinical practice, intervention decisions are rarely made only once: they might be repeated, deferred and re-evaluated. This requires estimated risks under interventions that can be reconsidered at several potential decision moments. In the current work, we highlight key considerations for formulating estimands in sequential prediction under interventions that can inform such intervention decisions. We illustrate these considerations by giving examples of estimands for a case study about choosing between vaginal delivery and cesarean section for women giving birth. Our formalization of prediction tasks in a sequential, causal, and estimand context provides guidance for future studies to ensure that the right question is answered and appropriate causal estimation approaches are chosen to develop sequential prediction models that can inform intervention decisions.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司