亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers optimal traffic signal control in smart cities, which has been taken as a complex networked system control problem. Given the interacting dynamics among traffic lights and road networks, attaining controller adaptivity and scalability stands out as a primary challenge. Capturing the spatial-temporal correlation among traffic lights under the framework of Multi-Agent Reinforcement Learning (MARL) is a promising solution. Nevertheless, existing MARL algorithms ignore effective information aggregation which is fundamental for improving the learning capacity of decentralized agents. In this paper, we design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation. Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network. Particularly, we transfer the road network topology into a graph shift operator by forming a diffusion process on the topology, which subsequently facilitates the construction of graph signals. A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning. Extensive experiments based on both synthetic and real-world datasets verify that our proposal outperforms existing decentralized algorithms.

相關內容

Neural graphics primitives are faster and achieve higher quality when their neural networks are augmented by spatial data structures that hold trainable features arranged in a grid. However, existing feature grids either come with a large memory footprint (dense or factorized grids, trees, and hash tables) or slow performance (index learning and vector quantization). In this paper, we show that a hash table with learned probes has neither disadvantage, resulting in a favorable combination of size and speed. Inference is faster than unprobed hash tables at equal quality while training is only 1.2-2.6x slower, significantly outperforming prior index learning approaches. We arrive at this formulation by casting all feature grids into a common framework: they each correspond to a lookup function that indexes into a table of feature vectors. In this framework, the lookup functions of existing data structures can be combined by simple arithmetic combinations of their indices, resulting in Pareto optimal compression and speed.

This paper investigates covert communications in an integrated sensing and communications system, where a dual-functional base station (called Alice) covertly transmits signals to a covert user (called Bob) while sensing multiple targets, with one of them acting as a potential watcher (called Willie) and maliciously eavesdropping on legitimate communications. To shelter the covert communications, Alice transmits additional dual-functional artificial noise (DFAN) with a varying power not only to create uncertainty at Willie's signal reception to confuse Willie but also to sense the targets simultaneously. Based on this framework, the weighted sum of the sensing beampattern means square error (MSE) and cross correlation is minimized by jointly optimizing the covert communication and DFAN signals subject to the minimum covert rate requirement. The robust design considers both cases of imperfect Willie's CSI (WCSI) and statistical WCSI. Under the worst-case assumption that Willie can adaptively adjust the detection threshold to achieve the best detection performance, the minimum detection error probability (DEP) at Willie is analytically derived in the closed-form expression. The formulated covertness constrained optimization problems are tackled by a feasibility-checking based difference-of-convex relaxation (DC) algorithm utilizing the S-procedure, Bernstein-type inequality, and the DC method. Simulation results validate the feasibility of the proposed scheme and demonstrate the covertness performance gains achieved by our proposed design over various benchmarks.

Ethereum smart contracts, which are autonomous decentralized applications on the blockchain that manage assets often exceeding millions of dollars, have become primary targets for cyberattacks. In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars. To counter these threats, various tools have been developed by academic and commercial entities to detect and mitigate vulnerabilities in smart contracts. Our study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice. We compiled four distinct datasets for this analysis. The first dataset comprises 77,219 source codes extracted directly from the blockchain, while the second includes over 4 million bytecodes obtained from Ethereum Mainnet and testnets. The other two datasets consist of nearly 14,000 manually annotated smart contracts and 373 smart contracts verified through audits, providing a foundation for a rigorous ground truth analysis on bytecode and source code. Using the unlabeled datasets, we conducted a comprehensive quantitative evaluation of 17 vulnerability scanners, revealing considerable discrepancies in their findings. Our analysis of the ground truth datasets indicated poor performance across all the tools we tested. This study unveils the reasons for poor performance and underscores that the current state of the art for smart contract security falls short in effectively addressing open problems, highlighting that the challenge of effectively detecting vulnerabilities remains a significant and unresolved issue.

Hybrid analog-digital beamforming stands out as a key enabler for future communication systems with a massive number of antennas. In this paper, we investigate the hybrid precoder design problem for angle-of-departure (AoD) estimation, where we take into account the practical constraint on the limited resolution of phase shifters. Our goal is to design a radio-frequency (RF) precoder and a base-band (BB) precoder to estimate AoD of the user with a high accuracy. To this end, we propose a two-step strategy where we first obtain the fully digital precoder that minimizes the angle error bound, and then the resulting digital precoder is decomposed into an RF precoder and a BB precoder, based on the alternating optimization and the alternating direction method of multipliers. Besides, we derive the quantization error upper bound and analyse the convergence behavior of the proposed algorithm. Numerical results demonstrate the superior performance of the proposed method over state-of-the-art baselines.

With the increasing importance of video data in real-world applications, there is a rising need for efficient object detection methods that utilize temporal information. While existing video object detection (VOD) techniques employ various strategies to address this challenge, they typically depend on locally adjacent frames or randomly sampled images within a clip. Although recent Transformer-based VOD methods have shown promising results, their reliance on multiple inputs and additional network complexity to incorporate temporal information limits their practical applicability. In this paper, we propose a novel approach to single image object detection, called Context Enhanced TRansformer (CETR), by incorporating temporal context into DETR using a newly designed memory module. To efficiently store temporal information, we construct a class-wise memory that collects contextual information across data. Additionally, we present a classification-based sampling technique to selectively utilize the relevant memory for the current image. In the testing, We introduce a test-time memory adaptation method that updates individual memory functions by considering the test distribution. Experiments with CityCam and ImageNet VID datasets exhibit the efficiency of the framework on various video systems. The project page and code will be made available at: //ku-cvlab.github.io/CETR.

Blind face restoration is an important task in computer vision and has gained significant attention due to its wide-range applications. In this work, we delve into the potential of leveraging the pretrained Stable Diffusion for blind face restoration. We propose BFRffusion which is thoughtfully designed to effectively extract features from low-quality face images and could restore realistic and faithful facial details with the generative prior of the pretrained Stable Diffusion. In addition, we build a privacy-preserving face dataset called PFHQ with balanced attributes like race, gender, and age. This dataset can serve as a viable alternative for training blind face restoration methods, effectively addressing privacy and bias concerns usually associated with the real face datasets. Through an extensive series of experiments, we demonstrate that our BFRffusion achieves state-of-the-art performance on both synthetic and real-world public testing datasets for blind face restoration and our PFHQ dataset is an available resource for training blind face restoration networks. The codes, pretrained models, and dataset are released at //github.com/chenxx89/BFRffusion.

The deep unfolding approach has attracted significant attention in computer vision tasks, which well connects conventional image processing modeling manners with more recent deep learning techniques. Specifically, by establishing a direct correspondence between algorithm operators at each implementation step and network modules within each layer, one can rationally construct an almost ``white box'' network architecture with high interpretability. In this architecture, only the predefined component of the proximal operator, known as a proximal network, needs manual configuration, enabling the network to automatically extract intrinsic image priors in a data-driven manner. In current deep unfolding methods, such a proximal network is generally designed as a CNN architecture, whose necessity has been proven by a recent theory. That is, CNN structure substantially delivers the translational invariant image prior, which is the most universally possessed structural prior across various types of images. However, standard CNN-based proximal networks have essential limitations in capturing the rotation symmetry prior, another universal structural prior underlying general images. This leaves a large room for further performance improvement in deep unfolding approaches. To address this issue, this study makes efforts to suggest a high-accuracy rotation equivariant proximal network that effectively embeds rotation symmetry priors into the deep unfolding framework. Especially, we deduce, for the first time, the theoretical equivariant error for such a designed proximal network with arbitrary layers under arbitrary rotation degrees. This analysis should be the most refined theoretical conclusion for such error evaluation to date and is also indispensable for supporting the rationale behind such networks with intrinsic interpretability requirements.

This paper deals with developing techniques for the reconstruction of high-dimensional datasets given each bivariate projection, as would be found in a matrix scatterplot. A graph-based solution is introduced, involving clique-finding, providing a set of possible rows that might make up the original dataset. Complications are discussed, including cases where phantom cliques are found, as well as cases where an exact solution is impossible. Additional methods are shown, with some dealing with fully deducing rows and others dealing with having to creatively produce methods that find some possibilities to be more likely than others. Results show that these methods are highly successful in recreating a significant portion of the original dataset in many cases - for randomly generated and real-world datasets - with the factors leading to a greater rate of failure being lower dimension, higher n, and lower interval.

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

北京阿比特科技有限公司