亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a fourth-order Magnus expansion based quantum algorithm for the simulation of many-body problems involving two-level quantum systems with time-dependent Hamiltonians, $\mathcal{H}(t)$. A major hurdle in the utilization of the Magnus expansion is the appearance of a commutator term which leads to prohibitively long circuits. We present a technique for eliminating this commutator and find that a single time-step of the resulting algorithm is only marginally costlier than that required for time-stepping with a time-independent Hamiltonian, requiring only three additional single-qubit layers. For a large class of Hamiltonians appearing in liquid-state nuclear magnetic resonance (NMR) applications, we further exploit symmetries of the Hamiltonian and achieve a surprising reduction in the expansion, whereby a single time-step of our fourth-order method has a circuit structure and cost that is identical to that required for a fourth-order Trotterized time-stepping procedure for time-independent Hamiltonians. Moreover, our algorithms are able to take time-steps that are larger than the wavelength of oscillation of the time-dependent Hamiltonian, making them particularly suited for highly-oscillatory controls. The resulting quantum circuits have shorter depths for all levels of accuracy when compared to first and second-order Trotterized methods, as well as other fourth-order Trotterized methods, making the proposed algorithm a suitable candidate for simulation of time-dependent Hamiltonians on near-term quantum devices.

相關內容

Bayesian model averaging is a practical method for dealing with uncertainty due to model specification. Use of this technique requires the estimation of model probability weights. In this work, we revisit the derivation of estimators for these model weights. Use of the Kullback-Leibler divergence as a starting point leads naturally to a number of alternative information criteria suitable for Bayesian model weight estimation. We explore three such criteria, known to the statistics literature before, in detail: a Bayesian analogue of the Akaike information criterion which we call the BAIC, the Bayesian predictive information criterion (BPIC), and the posterior predictive information criterion (PPIC). We compare the use of these information criteria in numerical analysis problems common in lattice field theory calculations. We find that the PPIC has the most appealing theoretical properties and can give the best performance in terms of model-averaging uncertainty, particularly in the presence of noisy data, while the BAIC is a simple and reliable alternative.

Solving high dimensional partial differential equations (PDEs) has historically posed a considerable challenge when utilizing conventional numerical methods, such as those involving domain meshes. Recent advancements in the field have seen the emergence of neural PDE solvers, leveraging deep networks to effectively tackle high dimensional PDE problems. This study introduces Inf-SupNet, a model-based unsupervised learning approach designed to acquire solutions for a specific category of elliptic PDEs. The fundamental concept behind Inf-SupNet involves incorporating the inf-sup formulation of the underlying PDE into the loss function. The analysis reveals that the global solution error can be bounded by the sum of three distinct errors: the numerical integration error, the duality gap of the loss function (training error), and the neural network approximation error for functions within Sobolev spaces. To validate the efficacy of the proposed method, numerical experiments conducted in high dimensions demonstrate its stability and accuracy across various boundary conditions, as well as for both semi-linear and nonlinear PDEs.

We provide a Lyapunov convergence analysis for time-inhomogeneous variable coefficient stochastic differential equations (SDEs). Three typical examples include overdamped, irreversible drift, and underdamped Langevin dynamics. We first formula the probability transition equation of Langevin dynamics as a modified gradient flow of the Kullback-Leibler divergence in the probability space with respect to time-dependent optimal transport metrics. This formulation contains both gradient and non-gradient directions depending on a class of time-dependent target distribution. We then select a time-dependent relative Fisher information functional as a Lyapunov functional. We develop a time-dependent Hessian matrix condition, which guarantees the convergence of the probability density function of the SDE. We verify the proposed conditions for several time-inhomogeneous Langevin dynamics. For the overdamped Langevin dynamics, we prove the $O(t^{-1/2})$ convergence in $L^1$ distance for the simulated annealing dynamics with a strongly convex potential function. For the irreversible drift Langevin dynamics, we prove an improved convergence towards the target distribution in an asymptotic regime. We also verify the convergence condition for the underdamped Langevin dynamics. Numerical examples demonstrate the convergence results for the time-dependent Langevin dynamics.

The present article introduces, mathematically analyzes, and numerically validates a new weak Galerkin (WG) mixed-FEM based on Banach spaces for the stationary Navier--Stokes equation in pseudostress-velocity formulation. More precisely, a modified pseudostress tensor, called $ \boldsymbol{\sigma} $, depending on the pressure, and the diffusive and convective terms has been introduced in the proposed technique, and a dual-mixed variational formulation has been derived where the aforementioned pseudostress tensor and the velocity, are the main unknowns of the system, whereas the pressure is computed via a post-processing formula. Thus, it is sufficient to provide a WG space for the tensor variable and a space of piecewise polynomial vectors of total degree at most 'k' for the velocity. Moreover, in order to define the weak discrete bilinear form, whose continuous version involves the classical divergence operator, the weak divergence operator as a well-known alternative for the classical divergence operator in a suitable discrete subspace is proposed. The well-posedness of the numerical solution is proven using a fixed-point approach and the discrete versions of the Babu\v{s}ka-Brezzi theory and the Banach-Ne\v{c}as-Babu\v{s}ka theorem. Additionally, an a priori error estimate is derived for the proposed method. Finally, several numerical results illustrating the method's good performance and confirming the theoretical rates of convergence are presented.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

We prove that, for each fixed genus g, the portion of semigroups belonging to infinite chains in the semigroup tree approaches 0 as the genus grows to infinite. This problem has been open since 2009.

Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi-parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B-spline function. For those "semiparametric" proposals, different prior scenarios ranging from prior independence to particular correlated structures are discussed in a real study with micro-virulence data and in an extensive simulation scenario that includes different data sample and time axis partition sizes in order to capture risk variations. The posterior distribution of the parameters was approximated using Markov chain Monte Carlo methods. Model selection was performed in accordance with the Deviance Information Criteria and the Log Pseudo-Marginal Likelihood. The results obtained reveal that, in general, Cox models present great robustness in covariate effects and survival estimates independent of the baseline hazard specification. In relation to the "semi-parametric" baseline hazard specification, the B-splines hazard function is less dependent on the regularization process than the piecewise specification because it demands a smaller time axis partition to estimate a similar behaviour of the risk.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

We propose an adaptive iteratively linearized finite element method (AILFEM) in the context of strongly monotone nonlinear operators in Hilbert spaces. The approach combines adaptive mesh-refinement with an energy-contractive linearization scheme (e.g., the Ka\v{c}anov method) and a norm-contractive algebraic solver (e.g., an optimal geometric multigrid method). Crucially, a novel parameter-free algebraic stopping criterion is designed and we prove that it leads to a uniformly bounded number of algebraic solver steps. Unlike available results requiring sufficiently small adaptivity parameters to ensure even plain convergence, the new AILFEM algorithm guarantees full R-linear convergence for arbitrary adaptivity parameters. Thus, parameter-robust convergence is guaranteed. Moreover, for sufficiently small adaptivity parameters, the new adaptive algorithm guarantees optimal complexity, i.e., optimal convergence rates with respect to the overall computational cost and, hence, time.

We present a theoretical foundation regarding the boundedness of the t-SNE algorithm. t-SNE employs gradient descent iteration with Kullback-Leibler (KL) divergence as the objective function, aiming to identify a set of points that closely resemble the original data points in a high-dimensional space, minimizing KL divergence. Investigating t-SNE properties such as perplexity and affinity under a weak convergence assumption on the sampled dataset, we examine the behavior of points generated by t-SNE under continuous gradient flow. Demonstrating that points generated by t-SNE remain bounded, we leverage this insight to establish the existence of a minimizer for KL divergence.

北京阿比特科技有限公司