亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Backdoor attack aims to deceive a victim model when facing backdoor instances while maintaining its performance on benign data. Current methods use manual patterns or special perturbations as triggers, while they often overlook the robustness against data corruption, making backdoor attacks easy to defend in practice. To address this issue, we propose a novel backdoor attack method named Spy-Watermark, which remains effective when facing data collapse and backdoor defense. Therein, we introduce a learnable watermark embedded in the latent domain of images, serving as the trigger. Then, we search for a watermark that can withstand collapse during image decoding, cooperating with several anti-collapse operations to further enhance the resilience of our trigger against data corruption. Extensive experiments are conducted on CIFAR10, GTSRB, and ImageNet datasets, demonstrating that Spy-Watermark overtakes ten state-of-the-art methods in terms of robustness and stealthiness.

相關內容

Deep learning models are increasingly data-hungry, requiring significant resources to collect and compile the datasets needed to train them, with Earth Observation (EO) models being no exception. However, the landscape of datasets in EO is relatively atomised, with interoperability made difficult by diverse formats and data structures. If ever larger datasets are to be built, and duplication of effort minimised, then a shared framework that allows users to combine and access multiple datasets is needed. Here, Major TOM (Terrestrial Observation Metaset) is proposed as this extensible framework. Primarily, it consists of a geographical indexing system based on a set of grid points and a metadata structure that allows multiple datasets with different sources to be merged. Besides the specification of Major TOM as a framework, this work also presents a large, open-access dataset, MajorTOM-Core, which covers the vast majority of the Earth's land surface. This dataset provides the community with both an immediately useful resource, as well as acting as a template for future additions to the Major TOM ecosystem. Access: //huggingface.co/Major-TOM

Identifying speakers of quotations in narratives is an important task in literary analysis, with challenging scenarios including the out-of-domain inference for unseen speakers, and non-explicit cases where there are no speaker mentions in surrounding context. In this work, we propose a simple and effective approach SIG, a generation-based method that verbalizes the task and quotation input based on designed prompt templates, which also enables easy integration of other auxiliary tasks that further bolster the speaker identification performance. The prediction can either come from direct generation by the model, or be determined by the highest generation probability of each speaker candidate. Based on our approach design, SIG supports out-of-domain evaluation, and achieves open-world classification paradigm that is able to accept any forms of candidate input. We perform both cross-domain evaluation and in-domain evaluation on PDNC, the largest dataset of this task, where empirical results suggest that SIG outperforms previous baselines of complicated designs, as well as the zero-shot ChatGPT, especially excelling at those hard non-explicit scenarios by up to 17% improvement. Additional experiments on another dataset WP further corroborate the efficacy of SIG.

Widely adopted motion forecasting datasets substitute the observed sensory inputs with higher-level abstractions such as 3D boxes and polylines. These sparse shapes are inferred through annotating the original scenes with perception systems' predictions. Such intermediate representations tie the quality of the motion forecasting models to the performance of computer vision models. Moreover, the human-designed explicit interfaces between perception and motion forecasting typically pass only a subset of the semantic information present in the original sensory input. To study the effect of these modular approaches, design new paradigms that mitigate these limitations, and accelerate the development of end-to-end motion forecasting models, we augment the Waymo Open Motion Dataset (WOMD) with large-scale, high-quality, diverse LiDAR data for the motion forecasting task. The new augmented dataset WOMD-LiDAR consists of over 100,000 scenes that each spans 20 seconds, consisting of well-synchronized and calibrated high quality LiDAR point clouds captured across a range of urban and suburban geographies (//waymo.com/open/data/motion/). Compared to Waymo Open Dataset (WOD), WOMD-LiDAR dataset contains 100x more scenes. Furthermore, we integrate the LiDAR data into the motion forecasting model training and provide a strong baseline. Experiments show that the LiDAR data brings improvement in the motion forecasting task. We hope that WOMD-LiDAR will provide new opportunities for boosting end-to-end motion forecasting models.

5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR blocklengths and code rates, which is a significant challenge. In this paper, we present a high-performance and low-complexity LDPC decoder, tailor-made to fulfill the 5G requirements. First, to close the gap between belief propagation (BP) decoding and its approximations in hardware, we propose an extension of adjusted min-sum decoding, called generalized adjusted min-sum (GA-MS) decoding. This decoding algorithm flexibly truncates the incoming messages at the check node level and carefully approximates the non-linear functions of BP decoding to balance the error-rate and hardware complexity. Numerical results demonstrate that the proposed fixed-point GAMS has only a minor gap of 0.1 dB compared to floating-point BP under various scenarios of 5G standard specifications. Secondly, we present a fully reconfigurable 5G NR LDPC decoder implementation based on GA-MS decoding. Given that memory occupies a substantial portion of the decoder area, we adopt multiple data compression and approximation techniques to reduce 42.2% of the memory overhead. The corresponding 28nm FD-SOI ASIC decoder has a core area of 1.823 mm2 and operates at 895 MHz. It is compatible with all 5G NR LDPC codes and achieves a peak throughput of 24.42 Gbps and a maximum area efficiency of 13.40 Gbps/mm2 at 4 decoding iterations.

Consecutive frames in a video contain redundancy, but they may also contain relevant complementary information for the detection task. The objective of our work is to leverage this complementary information to improve detection. Therefore, we propose a spatio-temporal fusion framework (STF). We first introduce multi-frame and single-frame attention modules that allow a neural network to share feature maps between nearby frames to obtain more robust object representations. Second, we introduce a dual-frame fusion module that merges feature maps in a learnable manner to improve them. Our evaluation is conducted on three different benchmarks including video sequences of moving road users. The performed experiments demonstrate that the proposed spatio-temporal fusion module leads to improved detection performance compared to baseline object detectors. Code is available at //github.com/noreenanwar/STF-module

Code editing encompasses a variety of pragmatic tasks that developers deal with daily. Despite its relevance and practical usefulness, automatic code editing remains an underexplored area in the evolution of deep learning models, partly due to data scarcity. In this work, we explore the use of Large Language Models (LLMs) to edit code based on user instructions. Evaluated on a novel human-written execution-based benchmark dubbed EditEval, we found current models often struggle to fulfill the instructions. In light of this, we contribute InstructCoder, the first instruction-tuning dataset designed to adapt LLMs for general-purpose code editing, containing high-diversity code-editing tasks such as comment insertion, code optimization, and code refactoring. It consists of over 114,000 instruction-input-output triplets and covers multiple distinct code editing scenarios. The collection process starts with filtered commit data sourced from GitHub Python repositories as seeds. Subsequently, the dataset is systematically expanded through an iterative process, where both seed and generated tasks are used to prompt ChatGPT for more data. Our findings reveal that open-source LLMs fine-tuned on InstructCoder can significantly enhance the accuracy of code edits, exhibiting superior code-editing performance matching advanced proprietary LLMs. The datasets and the source code are publicly available at //github.com/qishenghu/CodeInstruct.

As language models continue to scale in size and capability, they display an array of emerging behaviors, both beneficial and concerning. This heightens the need to control model behaviors. We hope to be able to control the personality traits of language models at the inference-time so as to have various character features, on top of which the requirements of different types of tasks can be met. Personality is a higher-level and more abstract behavioral representation for language models. We introduce ControlLM, which leverages differential activation patterns, derived from contrasting behavioral prompts in the model's latent space, to influence the model's personality traits at inference. This approach allows for the precise, real-time adjustment of model behavior. First, we demonstrate ControlLM's capacity to elicit diverse persona behaviors without any training, while precision control allows personality traits to closely match average human values. Subsequently, we showcase improved reasoning and question answering through selective amplification of beneficial attributes like conscientiousness and friendliness. We hope that this work will inspire research on controlling human-like behaviors of language models and provide insights for future research. Our code is publicly available at: //github.com/wengsyx/ControlLM.

Graph partitioning aims to divide a graph into disjoint subsets while optimizing a specific partitioning objective. The majority of formulations related to graph partitioning exhibit NP-hardness due to their combinatorial nature. Conventional methods, like approximation algorithms or heuristics, are designed for distinct partitioning objectives and fail to achieve generalization across other important partitioning objectives. Recently machine learning-based methods have been developed that learn directly from data. Further, these methods have a distinct advantage of utilizing node features that carry additional information. However, these methods assume differentiability of target partitioning objective functions and cannot generalize for an unknown number of partitions, i.e., they assume the number of partitions is provided in advance. In this study, we develop NeuroCUT with two key innovations over previous methodologies. First, by leveraging a reinforcement learning-based framework over node representations derived from a graph neural network and positional features, NeuroCUT can accommodate any optimization objective, even those with non-differentiable functions. Second, we decouple the parameter space and the partition count making NeuroCUT inductive to any unseen number of partition, which is provided at query time. Through empirical evaluation, we demonstrate that NeuroCUT excels in identifying high-quality partitions, showcases strong generalization across a wide spectrum of partitioning objectives, and exhibits strong generalization to unseen partition count.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司