亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Jamun leaf diseases pose a significant threat to agricultural productivity, negatively impacting both yield and quality in the jamun industry. The advent of machine learning has opened up new avenues for tackling these diseases effectively. Early detection and diagnosis are essential for successful crop management. While no automated systems have yet been developed specifically for jamun leaf disease detection, various automated systems have been implemented for similar types of disease detection using image processing techniques. This paper presents a comprehensive review of machine learning methodologies employed for diagnosing plant leaf diseases through image classification, which can be adapted for jamun leaf disease detection. It meticulously assesses the strengths and limitations of various Vision Transformer models, including Transfer learning model and vision transformer (TLMViT), SLViT, SE-ViT, IterationViT, Tiny-LeViT, IEM-ViT, GreenViT, and PMViT. Additionally, the paper reviews models such as Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet)-50V2, EfficientNet, Ensemble model, Convolutional Neural Network (CNN), and Locally Reversible Transformer. These machine-learning models have been evaluated on various datasets, demonstrating their real-world applicability. This review not only sheds light on current advancements in the field but also provides valuable insights for future research directions in machine learning-based jamun leaf disease detection and classification.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Knowledge distillation is the process of transferring knowledge from a more powerful large model (teacher) to a simpler counterpart (student). Numerous current approaches involve the student imitating the knowledge of the teacher directly. However, redundancy still exists in the learned representations through these prevalent methods, which tend to learn each spatial location's features indiscriminately. To derive a more compact representation (concept feature) from the teacher, inspired by human cognition, we suggest an innovative method, termed Generative Denoise Distillation (GDD), where stochastic noises are added to the concept feature of the student to embed them into the generated instance feature from a shallow network. Then, the generated instance feature is aligned with the knowledge of the instance from the teacher. We extensively experiment with object detection, instance segmentation, and semantic segmentation to demonstrate the versatility and effectiveness of our method. Notably, GDD achieves new state-of-the-art performance in the tasks mentioned above. We have achieved substantial improvements in semantic segmentation by enhancing PspNet and DeepLabV3, both of which are based on ResNet-18, resulting in mIoU scores of 74.67 and 77.69, respectively, surpassing their previous scores of 69.85 and 73.20 on the Cityscapes dataset of 20 categories. The source code is available at //github.com/ZhgLiu/GDD.

Human beings possess the capability to multiply a melange of multisensory cues while actively exploring and interacting with the 3D world. Current multi-modal large language models, however, passively absorb sensory data as inputs, lacking the capacity to actively interact with the objects in the 3D environment and dynamically collect their multisensory information. To usher in the study of this area, we propose MultiPLY, a multisensory embodied large language model that could incorporate multisensory interactive data, including visual, audio, tactile, and thermal information into large language models, thereby establishing the correlation among words, actions, and percepts. To this end, we first collect Multisensory Universe, a large-scale multisensory interaction dataset comprising 500k data by deploying an LLM-powered embodied agent to engage with the 3D environment. To perform instruction tuning with pre-trained LLM on such generated data, we first encode the 3D scene as abstracted object-centric representations and then introduce action tokens denoting that the embodied agent takes certain actions within the environment, as well as state tokens that represent the multisensory state observations of the agent at each time step. In the inference time, MultiPLY could generate action tokens, instructing the agent to take the action in the environment and obtain the next multisensory state observation. The observation is then appended back to the LLM via state tokens to generate subsequent text or action tokens. We demonstrate that MultiPLY outperforms baselines by a large margin through a diverse set of embodied tasks involving object retrieval, tool use, multisensory captioning, and task decomposition.

In an era where test-time adaptation methods increasingly rely on the nuanced manipulation of batch normalization (BN) parameters, one critical assumption often goes overlooked: that of independently and identically distributed (i.i.d.) test batches with respect to unknown labels. This assumption culminates in biased estimates of BN statistics and jeopardizes system stability under non-i.i.d. conditions. This paper pioneers a departure from the i.i.d. paradigm by introducing a groundbreaking strategy termed "Un-Mixing Test-Time Normalization Statistics" (UnMix-TNS). UnMix-TNS re-calibrates the instance-wise statistics used to normalize each instance in a batch by mixing it with multiple unmixed statistics components, thus inherently simulating the i.i.d. environment. The key lies in our innovative online unmixing procedure, which persistently refines these statistics components by drawing upon the closest instances from an incoming test batch. Remarkably generic in its design, UnMix-TNS seamlessly integrates with an array of state-of-the-art test-time adaptation methods and pre-trained architectures equipped with BN layers. Empirical evaluations corroborate the robustness of UnMix-TNS under varied scenarios ranging from single to continual and mixed domain shifts. UnMix-TNS stands out when handling test data streams with temporal correlation, including those with corrupted real-world non-i.i.d. streams, sustaining its efficacy even with minimal batch sizes and individual samples. Our results set a new standard for test-time adaptation, demonstrating significant improvements in both stability and performance across multiple benchmarks.

Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and autonomous driving. In particular, accurate and instant detection of pedestrians in low-light conditions and reduced visibility is of utmost importance for autonomous vehicles to prevent accidents and save lives. This paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that specifically target low-light conditions. The survey discusses the challenges faced in detecting pedestrians at night and explores state-of-the-art methodologies proposed in recent years to address this issue. These methodologies encompass a diverse range, including deep learning-based, feature-based, and hybrid approaches, which have shown promising results in enhancing pedestrian detection performance under challenging lighting conditions. Furthermore, the paper highlights current research directions in the field and identifies potential solutions that merit further investigation by researchers. By thoroughly examining pedestrian detection techniques in low-light conditions, this survey seeks to contribute to the advancement of safer and more reliable autonomous driving systems and other applications related to pedestrian safety. Accordingly, most of the current approaches in the field use deep learning-based image fusion methodologies (i.e., early, halfway, and late fusion) for accurate and reliable pedestrian detection. Moreover, the majority of the works in the field (approximately 48%) have been evaluated on the KAIST dataset, while the real-world video feeds recorded by authors have been used in less than six percent of the works.

The ensemble Kalman filter is widely used in applications because, for high dimensional filtering problems, it has a robustness that is not shared for example by the particle filter; in particular it does not suffer from weight collapse. However, there is no theory which quantifies its accuracy as an approximation of the true filtering distribution, except in the Gaussian setting. To address this issue we provide the first analysis of the accuracy of the ensemble Kalman filter beyond the Gaussian setting. We prove two types of results: the first type comprise a stability estimate controlling the error made by the ensemble Kalman filter in terms of the difference between the true filtering distribution and a nearby Gaussian; and the second type use this stability result to show that, in a neighbourhood of Gaussian problems, the ensemble Kalman filter makes a small error, in comparison with the true filtering distribution. Our analysis is developed for the mean field ensemble Kalman filter. We rewrite the update equations for this filter, and for the true filtering distribution, in terms of maps on probability measures. We introduce a weighted total variation metric to estimate the distance between the two filters and we prove various stability estimates for the maps defining the evolution of the two filters, in this metric. Using these stability estimates we prove results of the first and second types, in the weighted total variation metric. We also provide a generalization of these results to the Gaussian projected filter, which can be viewed as a mean field description of the unscented Kalman filter.

In emergency search and rescue scenarios, the quick location of trapped people is essential. However, disasters can render the Global Positioning System (GPS) unusable. Unmanned aerial vehicles (UAVs) with localization devices can serve as mobile anchors due to their agility and high line-of-sight (LoS) probability. Nonetheless, the number of available UAVs during the initial stages of disaster relief is limited, and innovative methods are needed to quickly plan UAV trajectories to locate non-uniformly distributed dynamic targets while ensuring localization accuracy. To address this challenge, we design a single UAV localization method without hovering, use the maximum likelihood estimation (MLE) method to estimate the location of mobile users and define the upper bound of the localization error by considering users' movement.Combining this localization method and localization error-index, we utilize the enhanced particle swarm optimization (EPSO) algorithm and edge access strategy to develop a low complexity localization-oriented adaptive trajectory planning algorithm. Simulation results demonstrate that our method outperforms other baseline algorithms, enabling faster localization without compromising localization accuracy.

While machine learning models are typically trained to solve prediction problems, we might often want to use them for optimization problems. For example, given a dataset of proteins and their corresponding fluorescence levels, we might want to optimize for a new protein with the highest possible fluorescence. This kind of data-driven optimization (DDO) presents a range of challenges beyond those in standard prediction problems, since we need models that successfully predict the performance of new designs that are better than the best designs seen in the training set. It is not clear theoretically when existing approaches can even perform better than the naive approach that simply selects the best design in the dataset. In this paper, we study how structure can enable sample-efficient data-driven optimization. To formalize the notion of structure, we introduce functional graphical models (FGMs) and show theoretically how they can provide for principled data-driven optimization by decomposing the original high-dimensional optimization problem into smaller sub-problems. This allows us to derive much more practical regret bounds for DDO, and the result implies that DDO with FGMs can achieve nearly optimal designs in situations where naive approaches fail due to insufficient coverage of the offline data. We further present a data-driven optimization algorithm that inferes the FGM structure itself, either over the original input variables or a latent variable representation of the inputs.

Deep metric learning has recently shown extremely promising results in the classical data domain, creating well-separated feature spaces. This idea was also adapted to quantum computers via Quantum Metric Learning(QMeL). QMeL consists of a 2 step process with a classical model to compress the data to fit into the limited number of qubits, then train a Parameterized Quantum Circuit(PQC) to create better separation in Hilbert Space. However, on Noisy Intermediate Scale Quantum (NISQ) devices. QMeL solutions result in high circuit width and depth, both of which limit scalability. We propose Quantum Polar Metric Learning (QPMeL) that uses a classical model to learn the parameters of the polar form of a qubit. We then utilize a shallow PQC with $R_y$ and $R_z$ gates to create the state and a trainable layer of $ZZ(\theta)$-gates to learn entanglement. The circuit also computes fidelity via a SWAP Test for our proposed Fidelity Triplet Loss function, used to train both classical and quantum components. When compared to QMeL approaches, QPMeL achieves 3X better multi-class separation, while using only 1/2 the number of gates and depth. We also demonstrate that QPMeL outperforms classical networks with similar configurations, presenting a promising avenue for future research on fully classical models with quantum loss functions.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司