Gradient-free prompt optimization methods have made significant strides in enhancing the performance of closed-source Large Language Models (LLMs) across a wide range of tasks. However, existing approaches make light of the importance of high-quality prompt initialization and the identification of effective optimization directions, thus resulting in substantial optimization steps to obtain satisfactory performance. In this light, we aim to accelerate prompt optimization process to tackle the challenge of low convergence rate. We propose a dual-phase approach which starts with generating high-quality initial prompts by adopting a well-designed meta-instruction to delve into task-specific information, and iteratively optimize the prompts at the sentence level, leveraging previous tuning experience to expand prompt candidates and accept effective ones. Extensive experiments on eight datasets demonstrate the effectiveness of our proposed method, achieving a consistent accuracy gain over baselines with less than five optimization steps.
Neural Representations for Videos (NeRV) have simplified the video codec process and achieved swift decoding speeds by encoding video content into a neural network, presenting a promising solution for video compression. However, existing work overlooks the crucial issue that videos reconstructed by these methods lack high-frequency details. To address this problem, this paper introduces a High-Frequency Enhanced Hybrid Neural Representation Network. Our method focuses on leveraging high-frequency information to improve the synthesis of fine details by the network. Specifically, we design a wavelet high-frequency encoder that incorporates Wavelet Frequency Decomposer (WFD) blocks to generate high-frequency feature embeddings. Next, we design the High-Frequency Feature Modulation (HFM) block, which leverages the extracted high-frequency embeddings to enhance the fitting process of the decoder. Finally, with the refined Harmonic decoder block and a Dynamic Weighted Frequency Loss, we further reduce the potential loss of high-frequency information. Experiments on the Bunny and UVG datasets demonstrate that our method outperforms other methods, showing notable improvements in detail preservation and compression performance.
Engineering design problems often involve solving parametric Partial Differential Equations (PDEs) under variable PDE parameters and domain geometry. Recently, neural operators have shown promise in learning PDE operators and quickly predicting the PDE solutions. However, training these neural operators typically requires large datasets, the acquisition of which can be prohibitively expensive. To overcome this, physics-informed training offers an alternative way of building neural operators, eliminating the high computational costs associated with Finite Element generation of training data. Nevertheless, current physics-informed neural operators struggle with limitations, either in handling varying domain geometries or varying PDE parameters. In this research, we introduce a novel method, the Physics-Informed Geometry-Aware Neural Operator (PI-GANO), designed to simultaneously generalize across both PDE parameters and domain geometries. We adopt a geometry encoder to capture the domain geometry features, and design a novel pipeline to integrate this component within the existing DCON architecture. Numerical results demonstrate the accuracy and efficiency of the proposed method. All the codes and data related to this work are available on GitHub: //github.com/WeihengZ/PI-GANO.
We explore the capability of four open-sourcelarge language models (LLMs) in argumentation mining (AM). We conduct experiments on three different corpora; persuasive essays(PE), argumentative microtexts (AMT) Part 1 and Part 2, based on two argumentation mining sub-tasks: (i) argumentative discourse units classifications (ADUC), and (ii) argumentative relation classification (ARC). This work aims to assess the argumentation capability of open-source LLMs, including Mistral 7B, Mixtral8x7B, LlamA2 7B and LlamA3 8B in both, zero-shot and few-shot scenarios. Our analysis contributes to further assessing computational argumentation with open-source LLMs in future research efforts.
We present Attend-Fusion, a novel and efficient approach for audio-visual fusion in video classification tasks. Our method addresses the challenge of exploiting both audio and visual modalities while maintaining a compact model architecture. Through extensive experiments on the YouTube-8M dataset, we demonstrate that our Attend-Fusion achieves competitive performance with significantly reduced model complexity compared to larger baseline models.
Neural Radiance Fields (NeRF) have demonstrated exceptional capabilities in reconstructing complex scenes with high fidelity. However, NeRF's view dependency can only handle low-frequency reflections. It falls short when handling complex planar reflections, often interpreting them as erroneous scene geometries and leading to duplicated and inaccurate scene representations. To address this challenge, we introduce a reflection-aware NeRF that jointly models planar reflectors, such as windows, and explicitly casts reflected rays to capture the source of the high-frequency reflections. We query a single radiance field to render the primary color and the source of the reflection. We propose a sparse edge regularization to help utilize the true sources of reflections for rendering planar reflections rather than creating a duplicate along the primary ray at the same depth. As a result, we obtain accurate scene geometry. Rendering along the primary ray results in a clean, reflection-free view, while explicitly rendering along the reflected ray allows us to reconstruct highly detailed reflections. Our extensive quantitative and qualitative evaluations of real-world datasets demonstrate our method's enhanced performance in accurately handling reflections.
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks. While existing adversarial perturbations are primarily applied to uncompressed images or compressed images by the traditional image compression method, i.e., JPEG, limited studies have investigated the robustness of models for image classification in the context of DNN-based image compression. With the rapid evolution of advanced image compression, DNN-based learned image compression has emerged as the promising approach for transmitting images in many security-critical applications, such as cloud-based face recognition and autonomous driving, due to its superior performance over traditional compression. Therefore, there is a pressing need to fully investigate the robustness of a classification system post-processed by learned image compression. To bridge this research gap, we explore the adversarial attack on a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules. Furthermore, to enhance the transferability of perturbations across various quality levels and architectures of learned image compression models, we introduce a saliency score-based sampling method to enable the fast generation of transferable perturbation. Extensive experiments with popular attack methods demonstrate the enhanced transferability of our proposed method when attacking images that have been post-processed with different learned image compression models.
We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.