亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In-context Learning (ICL) empowers large language models (LLMs) to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is susceptible to the selection and order of demonstration examples. In this work, we introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space. I2CL first generates a condensed vector representation, namely a context vector, from the demonstration examples. It then integrates the context vector during inference by injecting a linear combination of the context vector and query activations into the model's residual streams. Empirical evaluation on nine real-world tasks across three model architectures demonstrates that I2CL achieves few-shot performance with zero-shot cost and exhibits robustness against the variation of demonstration examples. Furthermore, I2CL facilitates a novel representation of "task-ids", enhancing task similarity detection and enabling effective transfer learning. We provide a comprehensive analysis of I2CL, offering deeper insights into its mechanisms and broader implications for ICL. The source code is available at: //github.com/LzVv123456/I2CL.

相關內容

While extensive research has explored the use of large language models (LLMs) for table-based reasoning, most approaches struggle with scalability when applied to large tables. To maintain the superior comprehension abilities of LLMs in these scenarios, we introduce ALTER(Augmentation for Large-Table-Based Reasoning)-a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions, via the query augmentor, and semi-structured tabular data, through the table augmentor. By utilizing only a small subset of relevant data from the table and supplementing it with pre-augmented schema, semantic, and literal information, ALTER achieves outstanding performance on table-based reasoning benchmarks. We also provide a detailed analysis of large-table scenarios, comparing different methods and various partitioning principles. In these scenarios, our method outperforms all other approaches and exhibits robustness and efficiency against perturbations.

Contemporary AI applications leverage large language models (LLMs) to harness their knowledge and reasoning abilities for natural language processing tasks. This approach shares similarities with the concept of oracle Turing machines (OTMs). To capture the broader potential of these computations, including those not yet realized, we propose an extension to OTMs: the LLM-oracle machine (LLM-OM), by employing a cluster of LLMs as the oracle. Each LLM acts as a black box, capable of answering queries within its expertise, albeit with a delay. We introduce four variants of the LLM-OM: basic, augmented, fault-avoidance, and $\epsilon$-fault. The first two are commonly observed in existing AI applications. The latter two are specifically designed to address the challenges of LLM hallucinations, biases, and inconsistencies, aiming to ensure reliable outcomes.

Service providers of large language model (LLM) applications collect user instructions in the wild and use them in further aligning LLMs with users' intentions. These instructions, which potentially contain sensitive information, are annotated by human workers in the process. This poses a new privacy risk not addressed by the typical private optimization. To this end, we propose using synthetic instructions to replace real instructions in data annotation and model fine-tuning. Formal differential privacy is guaranteed by generating those synthetic instructions using privately fine-tuned generators. Crucial in achieving the desired utility is our novel filtering algorithm that matches the distribution of the synthetic instructions to that of the real ones. In both supervised fine-tuning and reinforcement learning from human feedback, our extensive experiments demonstrate the high utility of the final set of synthetic instructions by showing comparable results to real instructions. In supervised fine-tuning, models trained with private synthetic instructions outperform leading open-source models such as Vicuna.

There are two well-known formulations of recursive types: iso-recursive and equi-recursive types. Abadi and Fiore [1996] have shown that iso- and equi-recursive types have the same expressive power. However, their encoding of equi-recursive types in terms of iso-recursive types requires explicit coercions. These coercions come with significant additional computational overhead, and complicate reasoning about the equivalence of the two formulations of recursive types. This paper proposes a generalization of iso-recursive types called full iso-recursive types. Full iso-recursive types allow encoding all programs with equi-recursive types without computational overhead. Instead of explicit term coercions, all type transformations are captured by computationally irrelevant casts, which can be erased at runtime without affecting the semantics of the program. Consequently, reasoning about the equivalence between the two approaches can be greatly simplified. We present a calculus called $\lambda^{\mu}_{Fi}$, which extends the simply typed lambda calculus (STLC) with full iso-recursive types. The $\lambda^{\mu}_{Fi}$ calculus is proved to be type sound, and shown to have the same expressive power as a calculus with equi-recursive types. We also extend our results to subtyping, and show that equi-recursive subtyping can be expressed in terms of iso-recursive subtyping with cast operators.

In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the `needle' unit. In contrast, the readers only need to extract answers from the short retrieved units. Such an imbalanced `heavy' retriever and `light' reader design can lead to sub-optimal performance. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a `long retriever' and a `long reader'. LongRAG processes the entire Wikipedia into 4K-token units, which is 30x longer than before. By increasing the unit size, we significantly reduce the total units from 22M to 700K. This significantly lowers the burden of retriever, which leads to a remarkable retrieval score: answer recall@1=71% on NQ (previously 52%) and answer recall@2=72% (previously 47%) on HotpotQA (full-wiki). Then we feed the top-k retrieved units ($\approx$ 30K tokens) to an existing long-context LLM to perform zero-shot answer extraction. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ, which is the best known result. LongRAG also achieves 64.3% on HotpotQA (full-wiki), which is on par of the SoTA model. Our study offers insights into the future roadmap for combining RAG with long-context LLMs.

Recent advances in large language models (LLMs) for code applications have demonstrated remarkable zero-shot fluency and instruction following on challenging code related tasks ranging from test case generation to self-repair. Unsurprisingly, however, models struggle to compose syntactically valid programs in programming languages unrepresented in pre-training, referred to as very low-resource Programming Languages (VLPLs). VLPLs appear in crucial settings, including domain-specific languages for internal tools and tool-chains for legacy languages. Inspired by an HCI technique called natural program elicitation, we propose designing an intermediate language that LLMs ``naturally'' know how to use and which can be automatically compiled to a target VLPL. When LLMs generate code that lies outside of this intermediate language, we use compiler techniques to repair the code into programs in the intermediate language. Overall, we introduce \emph{synthetic programming elicitation and compilation} (SPEAC), an approach that enables LLMs to generate syntactically valid code even for VLPLs. We empirically evaluate the performance of SPEAC in a case study and find that, compared to existing retrieval and fine-tuning baselines, SPEAC produces syntactically correct programs significantly more frequently without sacrificing semantic correctness.

Large language models (LLMs) have brought a paradigm shift to the field of code generation, offering the potential to enhance the software development process. However, previous research mainly focuses on the accuracy of code generation, while coding style differences between LLMs and human developers remain under-explored. In this paper, we empirically analyze the differences in coding style between the code generated by mainstream Code LLMs and the code written by human developers, and summarize coding style inconsistency taxonomy. Specifically, we first summarize the types of coding style inconsistencies by manually analyzing a large number of generation results. We then compare the code generated by Code LLMs with the code written by human programmers in terms of readability, conciseness, and robustness. The results reveal that LLMs and developers have different coding styles. Additionally, we study the possible causes of these inconsistencies and provide some solutions to alleviate the problem.

Large language model (LLM)-based applications consist of both LLM and non-LLM components, each contributing to the end-to-end latency. Despite great efforts to optimize LLM inference, end-to-end workflow optimization has been overlooked. Existing frameworks employ coarse-grained orchestration with task modules, which confines optimizations to within each module and yields suboptimal scheduling decisions. We propose fine-grained end-to-end orchestration, which utilizes task primitives as the basic units and represents each query's workflow as a primitive-level dataflow graph. This explicitly exposes a much larger design space, enables optimizations in parallelization and pipelining across primitives of different modules, and enhances scheduling to improve application-level performance. We build Teola, a novel orchestration framework for LLM-based applications that implements this scheme. Comprehensive experiments show that Teola can achieve up to 2.09x speedup over existing systems across various popular LLM applications.

Multimodal large language models (MLLMs) have shown impressive success across modalities such as image, video, and audio in a variety of understanding and generation tasks. However, current MLLMs are surprisingly poor at understanding webpage screenshots and generating their corresponding HTML code. To address this problem, we propose Web2Code, a benchmark consisting of a new large-scale webpage-to-code dataset for instruction tuning and an evaluation framework for the webpage understanding and HTML code translation abilities of MLLMs. For dataset construction, we leverage pretrained LLMs to enhance existing webpage-to-code datasets as well as generate a diverse pool of new webpages rendered into images. Specifically, the inputs are webpage images and instructions, while the responses are the webpage's HTML code. We further include diverse natural language QA pairs about the webpage content in the responses to enable a more comprehensive understanding of the web content. To evaluate model performance in these tasks, we develop an evaluation framework for testing MLLMs' abilities in webpage understanding and web-to-code generation. Extensive experiments show that our proposed dataset is beneficial not only to our proposed tasks but also in the general visual domain, while previous datasets result in worse performance. We hope our work will contribute to the development of general MLLMs suitable for web-based content generation and task automation. Our data and code will be available at //github.com/MBZUAI-LLM/web2code.

Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.

北京阿比特科技有限公司