This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.
We couple the L1 discretization of the Caputo fractional derivative in time with the Galerkin scheme to devise a linear numerical method for the semilinear subdiffusion equation. Two important points that we make are: nonsmooth initial data and time-dependent diffusion coefficient. We prove the stability and convergence of the method under weak assumptions concerning regularity of the diffusivity. We find optimal pointwise in space and global in time errors, which are verified with several numerical experiments.
A spatial second-order scheme for the nonlinear radiative transfer equations is introduced in this paper. The discretization scheme is based on the filtered spherical harmonics ($FP_N$) method for the angular variable and the unified gas kinetic scheme (UGKS) framework for the spatial and temporal variables respectively. In order to keep the scheme positive and second-order accuracy, firstly, we use the implicit Monte Carlo linearization method [6] in the construction of the UGKS numerical boundary fluxes. Then, by carefully analyzing the constructed second-order fluxes involved in the macro-micro decomposition, which is induced by the $FP_N$ angular discretization, we establish the sufficient conditions that guarantee the positivity of the radiative energy density and material temperature. Finally, we employ linear scaling limiters for the angular variable in the $P_N$ reconstruction and for the spatial variable in the piecewise linear slopes reconstruction respectively, which are shown to be realizable and reasonable to enforce the sufficient conditions holding. Thus, the desired scheme, called the $PPFP_N$-based UGKS, is obtained. Furthermore, in the regime $\epsilon\ll 1$ and the regime $\epsilon=O(1)$, a simplified spatial second-order scheme, called the $PPFP_N$-based SUGKS, is presented, which possesses all the properties of the non-simplified one. Inheriting the merit of UGKS, the proposed schemes are asymptotic preserving. By employing the $FP_N$ method for the angular variable, the proposed schemes are almost free of ray effects. To our best knowledge, this is the first time that spatial second-order, positive, asymptotic preserving and almost free of ray effects schemes are constructed for the nonlinear radiative transfer equations without operator splitting. Various numerical experiments are included to validate the properties of the proposed schemes.
We propose a finite element discretization for the steady, generalized Navier-Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.
The spectral clustering algorithm is often used as a binary clustering method for unclassified data by applying the principal component analysis. To study theoretical properties of the algorithm, the assumption of conditional homoscedasticity is often supposed in existing studies. However, this assumption is restrictive and often unrealistic in practice. Therefore, in this paper, we consider the allometric extension model, that is, the directions of the first eigenvectors of two covariance matrices and the direction of the difference of two mean vectors coincide, and we provide a non-asymptotic bound of the error probability of the spectral clustering algorithm for the allometric extension model. As a byproduct of the result, we obtain the consistency of the clustering method in high-dimensional settings.
This paper proposes a strategy to solve the problems of the conventional s-version of finite element method (SFEM) fundamentally. Because SFEM can reasonably model an analytical domain by superimposing meshes with different spatial resolutions, it has intrinsic advantages of local high accuracy, low computation time, and simple meshing procedure. However, it has disadvantages such as accuracy of numerical integration and matrix singularity. Although several additional techniques have been proposed to mitigate these limitations, they are computationally expensive or ad-hoc, and detract from its strengths. To solve these issues, we propose a novel strategy called B-spline based SFEM. To improve the accuracy of numerical integration, we employed cubic B-spline basis functions with $C^2$-continuity across element boundaries as the global basis functions. To avoid matrix singularity, we applied different basis functions to different meshes. Specifically, we employed the Lagrange basis functions as local basis functions. The numerical results indicate that using the proposed method, numerical integration can be calculated with sufficient accuracy without any additional techniques used in conventional SFEM. Furthermore, the proposed method avoids matrix singularity and is superior to conventional methods in terms of convergence for solving linear equations. Therefore, the proposed method has the potential to reduce computation time while maintaining a comparable accuracy to conventional SFEM.
Acceleration of gradient-based optimization methods is an issue of significant practical and theoretical interest, particularly in machine learning applications. Most research has focused on optimization over Euclidean spaces, but given the need to optimize over spaces of probability measures in many machine learning problems, it is of interest to investigate accelerated gradient methods in this context too. To this end, we introduce a Hamiltonian-flow approach that is analogous to moment-based approaches in Euclidean space. We demonstrate that algorithms based on this approach can achieve convergence rates of arbitrarily high order. Numerical examples illustrate our claim.
This paper develops a unified and computationally efficient method for change-point estimation along the time dimension in a non-stationary spatio-temporal process. By modeling a non-stationary spatio-temporal process as a piecewise stationary spatio-temporal process, we consider simultaneous estimation of the number and locations of change-points, and model parameters in each segment. A composite likelihood-based criterion is developed for change-point and parameters estimation. Under the framework of increasing domain asymptotics, theoretical results including consistency and distribution of the estimators are derived under mild conditions. In contrast to classical results in fixed dimensional time series that the localization error of change-point estimator is $O_{p}(1)$, exact recovery of true change-points can be achieved in the spatio-temporal setting. More surprisingly, the consistency of change-point estimation can be achieved without any penalty term in the criterion function. In addition, we further establish consistency of the number and locations of the change-point estimator under the infill asymptotics framework where the time domain is increasing while the spatial sampling domain is fixed. A computationally efficient pruned dynamic programming algorithm is developed for the challenging criterion optimization problem. Extensive simulation studies and an application to U.S. precipitation data are provided to demonstrate the effectiveness and practicality of the proposed method.
We introduce a proof-theoretic method for showing nondefinability of second-order intuitionistic connectives by quantifier-free schemata. We apply the method to confirm that Taranovsky's "realizability disjunction" connective does not admit a quantifier-free definition, and use it to obtain new results and more nuanced information about the nondefinability of Kreisel's and Po{\l}acik's unary connectives. The finitary and combinatorial nature of our method makes it more resilient to changes in metatheory than common semantic approaches, whose robustness tends to waver once we pass to non-classical and especially anti-classical settings. Furthermore, we can easily transcribe the problem-specific subproofs into univalent type theory and check them using the Agda proof assistant.
In this paper we introduce a general framework for analyzing the numerical conditioning of minimal problems in multiple view geometry, using tools from computational algebra and Riemannian geometry. Special motivation comes from the fact that relative pose estimation, based on standard 5-point or 7-point Random Sample Consensus (RANSAC) algorithms, can fail even when no outliers are present and there is enough data to support a hypothesis. We argue that these cases arise due to the intrinsic instability of the 5- and 7-point minimal problems. We apply our framework to characterize the instabilities, both in terms of the world scenes that lead to infinite condition number, and directly in terms of ill-conditioned image data. The approach produces computational tests for assessing the condition number before solving the minimal problem. Lastly synthetic and real data experiments suggest that RANSAC serves not only to remove outliers, but also to select for well-conditioned image data, as predicted by our theory.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.