We show that the epidemiological Renormalization Group (eRG) framework is a useful and minimal tool to effectively describe the temporal evolution of the Dengue multi-wave pandemics. We test the framework on the Dengue history of several countries located in both Latin America and Asia. We also observe a strong correlation between the total number of infected individuals and the changes in the local temperature. Our results further support the expectation that global warming is bound to increase the cases of Dengue worldwide. We then move to investigate, via the eRG, the recent outbreak in Fano, Italy and offer our projections.
Understanding relations arising out of interactions among entities can be very difficult, and predicting them is even more challenging. This problem has many applications in various fields, such as financial networks and e-commerce. These relations can involve much more complexities than just involving more than two entities. One such scenario is evolving recursive relations between multiple entities, and so far, this is still an open problem. This work addresses the problem of forecasting higher-order interaction events that can be multi-relational and recursive. We pose the problem in the framework of representation learning of temporal hypergraphs that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction-based decoder to model the occurrence of interaction events. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we develop a noise contrastive estimation method to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
In order to make the foundation model more efficient and effective, our idea is combining sequence transformation and state transformation. First, we prove the availability of rotary position embedding in the state space duality algorithm, which reduces the perplexity of the hybrid quadratic causal self-attention and state space duality by more than 4%, to ensure that the combining sequence transformation unifies position encoding. Second, we propose dynamic mask attention, which maintains 100% accuracy in the more challenging multi-query associative recall task, improving by more than 150% compared to quadratic causal self-attention and state space duality, to ensure that the combining sequence transformation selectively filters relevant information. Third, we design cross domain mixture of experts, which makes the computational speed of expert retrieval with more than 1024 experts 8 to 10 times faster than the mixture of experts, to ensure that the combining state transformation quickly retrieval mixture. Finally, we summarize these matrix algorithms that can form the foundation model: Wonderful Matrices, which can be a competitor to popular model architectures.
We study the Dominating set problem and Independent Set Problem for dynamic graphs in the vertex-arrival model. We say that a dynamic algorithm for one of these problems is $k$-stable when it makes at most $k$ changes to its output independent set or dominating set upon the arrival of each vertex. We study trade-offs between the stability parameter $k$ of the algorithm and the approximation ratio it achieves. We obtain the following results. 1. We show that there is a constant $\varepsilon^*>0$ such that any dynamic $(1+\varepsilon^*)$-approximation algorithm the for Dominating set problem has stability parameter $\Omega(n)$, even for bipartite graphs of maximum degree 4. 2. We present algorithms with very small stability parameters for the Dominating set problem in the setting where the arrival degree of each vertex is upper bounded by $d$. In particular, we give a $1$-stable $(d+1)^2$-approximation algorithm, a $3$-stable $(9d/2)$-approximation algorithm, and an $O(d)$-stable $O(1)$-approximation algorithm. 3. We show that there is a constant $\varepsilon^*>0$ such that any dynamic $(1+\varepsilon^*)$-approximation algorithm for the Independent Set Problem has stability parameter $\Omega(n)$, even for bipartite graphs of maximum degree $3$. 4. Finally, we present a $2$-stable $O(d)$-approximation algorithm for the Independent Set Problem, in the setting where the average degree of the graph is upper bounded by some constant $d$ at all times. We extend this latter algorithm to the fully dynamic model where vertices can also be deleted, achieving a $6$-stable $O(d)$-approximation algorithm.
The Piping and Instrumentation Diagrams (P&IDs) are foundational to the design, construction, and operation of workflows in the engineering and process industries. However, their manual creation is often labor-intensive, error-prone, and lacks robust mechanisms for error detection and correction. While recent advancements in Generative AI, particularly Large Language Models (LLMs) and Vision-Language Models (VLMs), have demonstrated significant potential across various domains, their application in automating generation of engineering workflows remains underexplored. In this work, we introduce a novel copilot for automating the generation of P&IDs from natural language descriptions. Leveraging a multi-step agentic workflow, our copilot provides a structured and iterative approach to diagram creation directly from Natural Language prompts. We demonstrate the feasibility of the generation process by evaluating the soundness and completeness of the workflow, and show improved results compared to vanilla zero-shot and few-shot generation approaches.
Despite their remarkable success, large language models (LLMs) have shown limited ability on applied tasks such as vulnerability detection. We investigate various prompting strategies for vulnerability detection and, as part of this exploration, propose a prompting strategy that integrates natural language descriptions of vulnerabilities with a contrastive chain-of-thought reasoning approach, augmented using contrastive samples from a synthetic dataset. Our study highlights the potential of LLMs to detect vulnerabilities by integrating natural language descriptions, contrastive reasoning, and synthetic examples into a comprehensive prompting framework. Our results show that this approach can enhance LLM understanding of vulnerabilities. On a high-quality vulnerability detection dataset such as SVEN, our prompting strategies can improve accuracies, F1-scores, and pairwise accuracies by 23%, 11%, and 14%, respectively.
Objective: Configuring a prosthetic leg is an integral part of the fitting process, but the personalization of a multi-modal powered knee-ankle prosthesis is often too complex to realize in a clinical environment. This paper develops both the technical means to individualize a hybrid kinematic-impedance controller for variable-incline walking and sit-stand transitions, and an intuitive Clinical Tuning Interface (CTI) that allows prosthetists to directly modify the controller behavior. Methods: Utilizing an established method for predicting kinematic gait individuality alongside a new parallel approach for kinetic individuality, we applied tuned characteristics exclusively from level-ground walking to personalize continuous-phase/task models of joint kinematics and impedance. To take advantage of this method, we developed a CTI that translates common clinical tuning parameters into model adjustments. We then conducted a case study involving an above-knee amputee participant where a prosthetist iteratively tuned the prosthesis in a simulated clinical session involving walking and sit-stand transitions. Results: The prosthetist fully tuned the multi-activity prosthesis controller in under 20 min. Each iteration of tuning (i.e., observation, parameter adjustment, and model reprocessing) took 2 min on average for walking and 1 min on average for sit-stand. The tuned behavior changes were appropriately manifested in the commanded prosthesis torques, both at the tuned tasks and across untuned tasks (inclines). Conclusion: The CTI leveraged able-bodied trends to efficiently personalize a wide array of walking tasks and sit-stand transitions. A case-study validated the CTI tuning method and demonstrated the efficiency necessary for powered knee-ankle prostheses to become clinically viable.
We study the Out-of-Distribution (OOD) generalization in machine learning and propose a general framework that establishes information-theoretic generalization bounds. Our framework interpolates freely between Integral Probability Metric (IPM) and $f$-divergence, which naturally recovers some known results (including Wasserstein- and KL-bounds), as well as yields new generalization bounds. Additionally, we show that our framework admits an optimal transport interpretation. When evaluated in two concrete examples, the proposed bounds either strictly improve upon existing bounds in some cases or match the best existing OOD generalization bounds. Moreover, by focusing on $f$-divergence and combining it with the Conditional Mutual Information (CMI) methods, we derive a family of CMI-based generalization bounds, which include the state-of-the-art ICIMI bound as a special instance. Finally, leveraging these findings, we analyze the generalization of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm, showing that our derived generalization bounds outperform existing information-theoretic generalization bounds in certain scenarios.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.