亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although image captioning models have made significant advancements in recent years, the majority of them heavily depend on high-quality datasets containing paired images and texts which are costly to acquire. Previous works leverage the CLIP's cross-modal association ability for image captioning, relying solely on textual information under unsupervised settings. However, not only does a modality gap exist between CLIP text and image features, but a discrepancy also arises between training and inference due to the unavailability of real-world images, which hinders the cross-modal alignment in text-only captioning. This paper proposes a novel method to address these issues by incorporating synthetic image-text pairs. A pre-trained text-to-image model is deployed to obtain images that correspond to textual data, and the pseudo features of generated images are optimized toward the real ones in the CLIP embedding space. Furthermore, textual information is gathered to represent image features, resulting in the image features with various semantics and the bridged modality gap. To unify training and inference, synthetic image features would serve as the training prefix for the language decoder, while real images are used for inference. Additionally, salient objects in images are detected as assistance to enhance the learning of modality alignment. Experimental results demonstrate that our method obtains the state-of-the-art performance on benchmark datasets.

相關內容

圖像字幕(Image Captioning),是指從圖像生成文本描述的過程,主要根據圖像中物體和物體的動作。

Siamese encoders such as sentence transformers are among the least understood deep models. Established attribution methods cannot tackle this model class since it compares two inputs rather than processing a single one. To address this gap, we have recently proposed an attribution method specifically for Siamese encoders (M\"oller et al., 2023). However, it requires models to be adjusted and fine-tuned and therefore cannot be directly applied to off-the-shelf models. In this work, we reassess these restrictions and propose (i) a model with exact attribution ability that retains the original model's predictive performance and (ii) a way to compute approximate attributions for off-the-shelf models. We extensively compare approximate and exact attributions and use them to analyze the models' attendance to different linguistic aspects. We gain insights into which syntactic roles Siamese transformers attend to, confirm that they mostly ignore negation, explore how they judge semantically opposite adjectives, and find that they exhibit lexical bias.

Recently, unified speech-text models, such as SpeechGPT, VioLA, and AudioPaLM, have achieved remarkable performance on various speech tasks. These models discretize speech signals into tokens (speech discretization) and use a shared vocabulary for both text and speech tokens. Then they train a single decoder-only Transformer on a mixture of speech tasks. However, these models rely on the Loss Masking strategy for the ASR task, which ignores the dependency among speech tokens. In this paper, we propose to model speech tokens in an autoregressive way, similar to text. We find that applying the conventional cross-entropy loss on input speech tokens does not consistently improve the ASR performance over the Loss Masking approach. To address this issue, we propose a novel approach denoted Smoothed Label Distillation (SLD), which applies a KL divergence loss with smoothed labels on speech tokens. Our experiments show that SLD effectively models speech tokens and outperforms Loss Masking for decoder-only Transformers in ASR tasks with different speech discretization methods. The source code can be found here: //github.com/alibaba-damo-academy/SpokenNLP/tree/main/sld

The efficacy of self-supervised speech models has been validated, yet the optimal utilization of their representations remains challenging across diverse tasks. In this study, we delve into Acoustic Word Embeddings (AWEs), a fixed-length feature derived from continuous representations, to explore their advantages in specific tasks. AWEs have previously shown utility in capturing acoustic discriminability. In light of this, we propose measuring layer-wise similarity between AWEs and word embeddings, aiming to further investigate the inherent context within AWEs. Moreover, we evaluate the contribution of AWEs, in comparison to other types of speech features, in the context of Speech Emotion Recognition (SER). Through a comparative experiment and a layer-wise accuracy analysis on two distinct corpora, IEMOCAP and ESD, we explore differences between AWEs and raw self-supervised representations, as well as the proper utilization of AWEs alone and in combination with word embeddings. Our findings underscore the acoustic context conveyed by AWEs and showcase the highly competitive SER accuracies by appropriately employing AWEs.

Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of images created by a particular artist and attempts to train a model capable of generating similar images without obtaining permission and giving credit to the artist. To address this issue, we propose a method for detecting such unauthorized data usage by planting the injected memorization into the text-to-image diffusion models trained on the protected dataset. Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions that are nearly imperceptible to humans but can be captured and memorized by diffusion models. By analyzing whether the model has memorized the injected content (i.e., whether the generated images are processed by the injected post-processing function), we can detect models that had illegally utilized the unauthorized data. Experiments on Stable Diffusion and VQ Diffusion with different model training or fine-tuning methods (i.e, LoRA, DreamBooth, and standard training) demonstrate the effectiveness of our proposed method in detecting unauthorized data usages. Code: //github.com/ZhentingWang/DIAGNOSIS.

In the realm of automatic speech recognition (ASR), the quest for models that not only perform with high accuracy but also offer transparency in their decision-making processes is crucial. The potential of quality estimation (QE) metrics is introduced and evaluated as a novel tool to enhance explainable artificial intelligence (XAI) in ASR systems. Through experiments and analyses, the capabilities of the NoRefER (No Reference Error Rate) metric are explored in identifying word-level errors to aid post-editors in refining ASR hypotheses. The investigation also extends to the utility of NoRefER in the corpus-building process, demonstrating its effectiveness in augmenting datasets with insightful annotations. The diagnostic aspects of NoRefER are examined, revealing its ability to provide valuable insights into model behaviors and decision patterns. This has proven beneficial for prioritizing hypotheses in post-editing workflows and fine-tuning ASR models. The findings suggest that NoRefER is not merely a tool for error detection but also a comprehensive framework for enhancing ASR systems' transparency, efficiency, and effectiveness. To ensure the reproducibility of the results, all source codes of this study are made publicly available.

Reliable predictions of critical phenomena, such as weather, wildfires and epidemics are often founded on models described by Partial Differential Equations (PDEs). However, simulations that capture the full range of spatio-temporal scales in such PDEs are often prohibitively expensive. Consequently, coarse-grained simulations that employ heuristics and empirical closure terms are frequently utilized as an alternative. We propose a novel and systematic approach for identifying closures in under-resolved PDEs using Multi-Agent Reinforcement Learning (MARL). The MARL formulation incorporates inductive bias and exploits locality by deploying a central policy represented efficiently by Convolutional Neural Networks (CNN). We demonstrate the capabilities and limitations of MARL through numerical solutions of the advection equation and the Burgers' equation. Our results show accurate predictions for in- and out-of-distribution test cases as well as a significant speedup compared to resolving all scales.

Recent works have demonstrated the feasibility of inverting face recognition systems, enabling to recover convincing face images using only their embeddings. We leverage such template inversion models to develop a novel type ofdeep morphing attack based on inverting a theoretical optimal morph embedding, which is obtained as an average of the face embeddings of source images. We experiment with two variants of this approach: the first one exploits a fully self-contained embedding-to-image inversion model, while the second leverages the synthesis network of a pretrained StyleGAN network for increased morph realism. We generate morphing attacks from several source datasets and study the effectiveness of those attacks against several face recognition networks. We showcase that our method can compete with and regularly beat the previous state of the art for deep-learning based morph generation in terms of effectiveness, both in white-box and black-box attack scenarios, and is additionally much faster to run. We hope this might facilitate the development of large scale deep morph datasets for training detection models.

Adversarial attacks pose a challenge to the deployment of deep neural networks (DNNs), while previous defense models overlook the generalization to various attacks. Inspired by targeted therapies for cancer, we view adversarial samples as local lesions of natural benign samples, because a key finding is that salient attack in an adversarial sample dominates the attacking process, while trivial attack unexpectedly provides trustworthy evidence for obtaining generalizable robustness. Based on this finding, a Pixel Surgery and Semantic Regeneration (PSSR) model following the targeted therapy mechanism is developed, which has three merits: 1) To remove the salient attack, a score-based Pixel Surgery module is proposed, which retains the trivial attack as a kind of invariance information. 2) To restore the discriminative content, a Semantic Regeneration module based on a conditional alignment extrapolator is proposed, which achieves pixel and semantic consistency. 3) To further harmonize robustness and accuracy, an intractable problem, a self-augmentation regularizer with adversarial R-drop is designed. Experiments on numerous benchmarks show the superiority of PSSR.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司