Machine Learning as a Service (MLaaS) platforms have gained popularity due to their accessibility, cost-efficiency, scalability, and rapid development capabilities. However, recent research has highlighted the vulnerability of cloud-based models in MLaaS to model extraction attacks. In this paper, we introduce FDINET, a novel defense mechanism that leverages the feature distribution of deep neural network (DNN) models. Concretely, by analyzing the feature distribution from the adversary's queries, we reveal that the feature distribution of these queries deviates from that of the model's training set. Based on this key observation, we propose Feature Distortion Index (FDI), a metric designed to quantitatively measure the feature distribution deviation of received queries. The proposed FDINET utilizes FDI to train a binary detector and exploits FDI similarity to identify colluding adversaries from distributed extraction attacks. We conduct extensive experiments to evaluate FDINET against six state-of-the-art extraction attacks on four benchmark datasets and four popular model architectures. Empirical results demonstrate the following findings FDINET proves to be highly effective in detecting model extraction, achieving a 100% detection accuracy on DFME and DaST. FDINET is highly efficient, using just 50 queries to raise an extraction alarm with an average confidence of 96.08% for GTSRB. FDINET exhibits the capability to identify colluding adversaries with an accuracy exceeding 91%. Additionally, it demonstrates the ability to detect two types of adaptive attacks.
The stability, robustness, accuracy, and efficiency of space-time finite element methods crucially depend on the choice of approximation spaces for test and trial functions. This is especially true for high-order, mixed finite element methods which often must satisfy an inf-sup condition in order to ensure stability. With this in mind, the primary objective of this paper and a companion paper is to provide a wide range of explicitly stated, conforming, finite element spaces in four-dimensions. In this paper, we construct explicit high-order conforming finite elements on 4-cubes (tesseracts); our construction uses tools from the recently developed `Finite Element Exterior Calculus'. With a focus on practical implementation, we provide details including Piola-type transformations, and explicit expressions for the volumetric, facet, face, edge, and vertex degrees of freedom. In addition, we establish important theoretical properties, such as the exactness of the finite element sequences, and the unisolvence of the degrees of freedom.
Large Language Models (LLMs) have emerged as a transformative force, revolutionizing numerous fields well beyond the conventional domain of Natural Language Processing (NLP) and garnering unprecedented attention. As LLM technology continues to progress, the telecom industry is facing the prospect of its potential impact on its landscape. To elucidate these implications, we delve into the inner workings of LLMs, providing insights into their current capabilities and limitations. We also examine the use cases that can be readily implemented in the telecom industry, streamlining numerous tasks that currently hinder operational efficiency and demand significant manpower and engineering expertise. Furthermore, we uncover essential research directions that deal with the distinctive challenges of utilizing the LLMs within the telecom domain. Addressing these challenges represents a significant stride towards fully harnessing the potential of LLMs and unlocking their capabilities to the fullest extent within the telecom domain.
High-definition (HD) map provides abundant and precise static environmental information of the driving scene, serving as a fundamental and indispensable component for planning in autonomous driving system. In this paper, we present \textbf{Map} \textbf{TR}ansformer, an end-to-end framework for online vectorized HD map construction. We propose a unified permutation-equivalent modeling approach, \ie, modeling map element as a point set with a group of equivalent permutations, which accurately describes the shape of map element and stabilizes the learning process. We design a hierarchical query embedding scheme to flexibly encode structured map information and perform hierarchical bipartite matching for map element learning. To speed up convergence, we further introduce auxiliary one-to-many matching and dense supervision. The proposed method well copes with various map elements with arbitrary shapes. It runs at real-time inference speed and achieves state-of-the-art performance on both nuScenes and Argoverse2 datasets. Abundant qualitative results show stable and robust map construction quality in complex and various driving scenes. Code and more demos are available at \url{//github.com/hustvl/MapTR} for facilitating further studies and applications.
The state-of-the-art predictive maintenance (PdM) techniques have shown great success in reducing maintenance costs and downtime of complicated machines while increasing overall productivity through extensive utilization of Internet-of-Things (IoT) and Deep Learning (DL). Unfortunately, IoT sensors and DL algorithms are both prone to cyber-attacks. For instance, DL algorithms are known for their susceptibility to adversarial examples. Such adversarial attacks are vastly under-explored in the PdM domain. This is because the adversarial attacks in the computer vision domain for classification tasks cannot be directly applied to the PdM domain for multivariate time series (MTS) regression tasks. In this work, we propose an end-to-end methodology to design adversarially robust PdM systems by extensively analyzing the effect of different types of adversarial attacks and proposing a novel adversarial defense technique for DL-enabled PdM models. First, we propose novel MTS Projected Gradient Descent (PGD) and MTS PGD with random restarts (PGD_r) attacks. Then, we evaluate the impact of MTS PGD and PGD_r along with MTS Fast Gradient Sign Method (FGSM) and MTS Basic Iterative Method (BIM) on Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and Bi-directional LSTM based PdM system. Our results using NASA's turbofan engine dataset show that adversarial attacks can cause a severe defect (up to 11X) in the RUL prediction, outperforming the effectiveness of the state-of-the-art PdM attacks by 3X. Furthermore, we present a novel approximate adversarial training method to defend against adversarial attacks. We observe that approximate adversarial training can significantly improve the robustness of PdM models (up to 54X) and outperforms the state-of-the-art PdM defense methods by offering 3X more robustness.
In this research, a comparative study of four Quantum Machine Learning (QML) models was conducted for fraud detection in finance. We proved that the Quantum Support Vector Classifier model achieved the highest performance, with F1 scores of 0.98 for fraud and non-fraud classes. Other models like the Variational Quantum Classifier, Estimator Quantum Neural Network (QNN), and Sampler QNN demonstrate promising results, propelling the potential of QML classification for financial applications. While they exhibit certain limitations, the insights attained pave the way for future enhancements and optimisation strategies. However, challenges exist, including the need for more efficient Quantum algorithms and larger and more complex datasets. The article provides solutions to overcome current limitations and contributes new insights to the field of Quantum Machine Learning in fraud detection, with important implications for its future development.
Brain-inspired Spiking Neural Networks (SNNs) have the characteristics of event-driven and high energy-efficient, which are different from traditional Artificial Neural Networks (ANNs) when deployed on edge devices such as neuromorphic chips. Most previous work focuses on SNNs training strategies to improve model performance and brings larger and deeper network architectures. It is difficult to deploy these complex networks on resource-limited edge devices directly. To meet such demand, people compress SNNs very cautiously to balance the performance and the computation efficiency. Existing compression methods either iteratively pruned SNNs using weights norm magnitude or formulated the problem as a sparse learning optimization. We propose an improved end-to-end Minimax optimization method for this sparse learning problem to better balance the model performance and the computation efficiency. We also demonstrate that jointly applying compression and finetuning on SNNs is better than sequentially, especially for extreme compression ratios. The compressed SNN models achieved state-of-the-art (SOTA) performance on various benchmark datasets and architectures. Our code is available at //github.com/chenjallen/Resource-Constrained-Compression-on-SNN.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multi-modal tasks and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention and branch attention; a related repository //github.com/MenghaoGuo/Awesome-Vision-Attentions is dedicated to collecting related work. We also suggest future directions for attention mechanism research.
In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.