亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Do large language models (LLMs) display rational reasoning? LLMs have been shown to contain human biases due to the data they have been trained on; whether this is reflected in rational reasoning remains less clear. In this paper, we answer this question by evaluating seven language models using tasks from the cognitive psychology literature. We find that, like humans, LLMs display irrationality in these tasks. However, the way this irrationality is displayed does not reflect that shown by humans. When incorrect answers are given by LLMs to these tasks, they are often incorrect in ways that differ from human-like biases. On top of this, the LLMs reveal an additional layer of irrationality in the significant inconsistency of the responses. Aside from the experimental results, this paper seeks to make a methodological contribution by showing how we can assess and compare different capabilities of these types of models, in this case with respect to rational reasoning.

相關內容

Large language models (LLMs), like ChatGPT, have greatly simplified text generation tasks. However, they have also raised concerns about privacy risks such as data leakage and unauthorized data collection. Existing solutions for privacy-preserving inference face practical challenges related to computation time and communication costs. In this paper, we propose InferDPT, the first practical framework for the privacy-preserving Inference of black-box LLMs, implementing Differential Privacy in Text generation. InferDPT comprises two key modules: the "perturbation module" utilizes the exponential mechanism to generate a perturbed prompt, facilitating privacy-preserving inference with black-box LLMs, and the "extraction module", inspired by knowledge distillation and retrieval-augmented generation, extracts coherent and consistent text from the perturbed generation result, ensuring successful text generation completion. To address privacy concerns related to previous exponential mechanisms' susceptibility to embedding revision attacks, we introduce RANTEXT, a novel differential privacy mechanism integrated into the perturbation module of InferDPT, which introduces the concept of "RANdom adjacency" for TEXT perturbation within the prompt. Experimental results across three datasets demonstrate that the text generation quality of InferDPT is comparable to that of non-private GPT-4, and RANTEXT surpasses existing state-of-the-art mechanisms, namely, SANTEXT+ and CUSTEXT+ in the trade-off between privacy and utility. Even with an privacy parameter epsilon value of 6.0, RANTEXT achieves an average privacy protection rate exceeding 90% against embedding revision attacks, which is 0.58 times higher than that of SANTEXT+ and 3.35 times higher than that of CUSTEXT+.

AI and generative AI tools, including chatbots like ChatGPT that rely on large language models (LLMs), have burst onto the scene this year, creating incredible opportunities to increase work productivity and improve our lives. Statisticians and data scientists have begun experiencing the benefits from the availability of these tools in numerous ways, such as the generation of programming code from text prompts to analyze data or fit statistical models. One area that these tools can make a substantial impact is in research discovery and summarization. Standalone tools and plugins to chatbots are being developed that allow researchers to more quickly find relevant literature than pre-2023 search tools. Furthermore, generative AI tools have improved to the point where they can summarize and extract the key points from research articles in succinct language. Finally, chatbots based on highly parameterized LLMs can be used to simulate abductive reasoning, which provides researchers the ability to make connections among related technical topics, which can also be used for research discovery. We review the developments in AI and generative AI for research discovery and summarization, and propose directions where these types of tools are likely to head in the future that may be of interest to statistician and data scientists.

The wide adoption of Large language models (LLMs) makes their dependability a pressing concern. Detection of errors is the first step to mitigating their impact on a system and thus, efficient error detection for LLMs is an important issue. In many settings, the LLM is considered as a black box with no access to the internal nodes; this prevents the use of many error detection schemes that need access to the model's internal nodes. An interesting observation is that the output of LLMs in error-free operation should be valid and normal text. Therefore, when the text is not valid or differs significantly from normal text, it is likely that there is an error. Based on this observation we propose to perform Concurrent Linguistic Error Detection (CLED); this scheme extracts some linguistic features of the text generated by the LLM and feeds them to a concurrent classifier that detects errors. Since the proposed error detection mechanism only relies on the outputs of the model, then it can be used on LLMs in which there is no access to the internal nodes. The proposed CLED scheme has been evaluated on the T5 model when used for news summarization and on the OPUS-MT model when used for translation. In both cases, the same set of linguistic features has been used for error detection to illustrate the applicability of the proposed scheme beyond a specific case. The results show that CLED can detect most of the errors at a low overhead penalty. The use of the concurrent classifier also enables a trade-off between error detection effectiveness and its associated overhead, so providing flexibility to a designer.

In everyday communication, humans frequently use speech and gestures to refer to specific areas or objects, a process known as Referential Dialogue (RD). While prior studies have investigated RD through Large Language Models (LLMs) or Large Multimodal Models (LMMs) in static contexts, the exploration of Temporal Referential Dialogue (TRD) within audio-visual media remains limited. Two primary challenges hinder progress in this field: (1) the absence of comprehensive, untrimmed audio-visual video datasets with precise temporal annotations, and (2) the need for methods to integrate complex temporal auditory and visual cues effectively. To address these challenges, we introduce a novel framework to generate PU-VALOR, an extensive audio-visual dataset comprising over 114,000 untrimmed videos with accurate temporal demarcations. We also present AVicuna, featuring an Audio-Visual Tokens Interleaver (AVTI) that ensures the temporal alignment of audio-visual information. Additionally, we develop the A5-222K dataset, encompassing more than 200,000 audio-text pairings, to facilitate the audio and text alignments. Our experiments demonstrate that AVicuna can effectively handle TRD in audio-visual videos and achieve state-of-the-art performance on various audio-visual video understanding tasks, particularly in untrimmed videos. We further investigate the optimal audio-interleaving rate for interleaved audio-visual inputs, which maximizes performance on the Audio-Visual Event Dense Localization task.

Although large language models (LLMs) have achieved significant success in various tasks, they often struggle with hallucination problems, especially in scenarios requiring deep and responsible reasoning. These issues could be partially addressed by introducing external knowledge graphs (KG) in LLM reasoning. In this paper, we propose a new LLM-KG integrating paradigm ``$\hbox{LLM}\otimes\hbox{KG}$'' which treats the LLM as an agent to interactively explore related entities and relations on KGs and perform reasoning based on the retrieved knowledge. We further implement this paradigm by introducing a new approach called Think-on-Graph (ToG), in which the LLM agent iteratively executes beam search on KG, discovers the most promising reasoning paths, and returns the most likely reasoning results. We use a number of well-designed experiments to examine and illustrate the following advantages of ToG: 1) compared with LLMs, ToG has better deep reasoning power; 2) ToG has the ability of knowledge traceability and knowledge correctability by leveraging LLMs reasoning and expert feedback; 3) ToG provides a flexible plug-and-play framework for different LLMs, KGs and prompting strategies without any additional training cost; 4) the performance of ToG with small LLM models could exceed large LLM such as GPT-4 in certain scenarios and this reduces the cost of LLM deployment and application. As a training-free method with lower computational cost and better generality, ToG achieves overall SOTA in 6 out of 9 datasets where most previous SOTAs rely on additional training.

While large language models (LLMs) equipped with techniques like chain-of-thought prompting have demonstrated impressive capabilities, they still fall short in their ability to reason robustly in complex settings. However, evaluating LLM reasoning is challenging because system capabilities continue to grow while benchmark datasets for tasks like logical deduction have remained static. We introduce MuSR, a dataset for evaluating language models on multistep soft reasoning tasks specified in a natural language narrative. This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm, enabling the construction of complex reasoning instances that challenge GPT-4 (e.g., murder mysteries roughly 1000 words in length) and which can be scaled further as more capable LLMs are released. Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning; this makes it simultaneously much more challenging than other synthetically-crafted benchmarks while remaining realistic and tractable for human annotators to solve with high accuracy. We evaluate a range of LLMs and prompting techniques on this dataset and characterize the gaps that remain for techniques like chain-of-thought to perform robust reasoning.

Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司