亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

QAC$^0$ is the class of constant-depth quantum circuits with polynomially many ancillary qubits, where Toffoli gates on arbitrarily many qubits are allowed. In this work, we show that the parity function cannot be computed in QAC$^0$, resolving a long-standing open problem in quantum circuit complexity more than twenty years old. As a result, this proves ${\rm QAC}^0 \subsetneqq {\rm QAC}_{\rm wf}^0$. We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2^{\widetilde{\Omega}(n^{1/d})}$ ancillary qubits, which is close to tight. This implies a similar lower bound on approximately preparing cat states using QAC circuits. Finally, we prove a quantum analog of the Linial-Mansour-Nisan theorem for QAC$^0$. This implies that, for any QAC$^0$ circuit $U$ with $a={\rm poly}(n)$ ancillary qubits, and for any $x\in\{0,1\}^n$, the correlation between $Q(x)$ and the parity function is bounded by ${1}/{2} + 2^{-\widetilde{\Omega}(n^{1/d})}$, where $Q(x)$ denotes the output of measuring the output qubit of $U|x,0^a\rangle$. All the above consequences rely on the following technical result. If $U$ is a QAC$^0$ circuit with $a={\rm poly}(n)$ ancillary qubits, then there is a distribution $\mathcal{D}$ of bounded polynomials of degree polylog$(n)$ such that with high probability, a random polynomial from $\mathcal{D}$ approximates the function $\langle x,0^a| U^\dag Z_{n+1} U |x,0^a\rangle$ for a large fraction of $x\in \{0,1\}^n$. This result is analogous to the Razborov-Smolensky result on the approximation of AC$^0$ circuits by random low-degree polynomials.

相關內容

Most of the scientific literature on causal modeling considers the structural framework of Pearl and the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably uses do-interventions and the potential-outcome subscript notation to write counterfactual outcomes. In this paper, we agnostically superimpose the two causal models to specify under which mathematical conditions structural counterfactual outcomes and potential outcomes need to, do not need to, can, or cannot be equal (almost surely or law). Our comparison reminds that a structural causal model and a Rubin causal model compatible with the same observations do not have to coincide, and highlights real-world problems where they even cannot correspond. Then, we examine common claims and practices from the causal-inference literature in the light of these results. In doing so, we aim at clarifying the relationship between the two causal frameworks, and the interpretation of their respective counterfactuals.

A convergent numerical method for $\alpha$-dissipative solutions of the Hunter-Saxton equation is derived. The method is based on applying a tailor-made projection operator to the initial data, and then solving exactly using the generalized method of characteristics. The projection step is the only step that introduces any approximation error. It is therefore crucial that its design ensures not only a good approximation of the initial data, but also that errors due to the energy dissipation at later times remain small. Furthermore, it is shown that the main quantity of interest, the wave profile, converges in $L^{\infty}$ for all $t \geq 0$, while a subsequence of the energy density converges weakly for almost every time.

We present polynomial-time SDP-based algorithms for the following problem: For fixed $k \leq \ell$, given a real number $\epsilon>0$ and a graph $G$ that admits a $k$-colouring with a $\rho$-fraction of the edges coloured properly, it returns an $\ell$-colouring of $G$ with an $(\alpha \rho - \epsilon)$-fraction of the edges coloured properly in polynomial time in $G$ and $1 / \epsilon$. Our algorithms are based on the algorithms of Frieze and Jerrum [Algorithmica'97] and of Karger, Motwani and Sudan [JACM'98]. When $k$ is fixed and $\ell$ grows large, our algorithm achieves an approximation ratio of $\alpha = 1 - o(1 / \ell)$. When $k, \ell$ are both large, our algorithm achieves an approximation ratio of $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell) - O(1 / k^2)$; if we fix $d = \ell - k$ and allow $k, \ell$ to grow large, this is $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell)$. By extending the results of Khot, Kindler, Mossel and O'Donnell [SICOMP'07] to the promise setting, we show that for large $k$ and $\ell$, assuming Khot's Unique Games Conjecture (\UGC), it is \NP-hard to achieve an approximation ratio $\alpha$ greater than $1 - 1 / \ell + 2 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided that $\ell$ is bounded by a function that is $o(\exp(\sqrt[3]{k}))$. For the case where $d = \ell - k$ is fixed, this bound matches the performance of our algorithm up to $o(\ln \ell / k \ell)$. Furthermore, by extending the results of Guruswami and Sinop [ToC'13] to the promise setting, we prove that it is \NP-hard to achieve an approximation ratio greater than $1 - 1 / \ell + 8 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided again that $\ell$ is bounded as before (but this time without assuming the \UGC).

We propose and analyse a boundary-preserving numerical scheme for the weak approximations of some stochastic partial differential equations (SPDEs) with bounded state-space. We impose regularity assumptions on the drift and diffusion coefficients only locally on the state-space. In particular, the drift and diffusion coefficients may be non-globally Lipschitz continuous and superlinearly growing. The scheme consists of a finite difference discretisation in space and a Lie--Trotter splitting followed by exact simulation and exact integration in time. We prove weak convergence of optimal order 1/4 for globally Lipschitz continuous test functions of the scheme by proving strong convergence towards a strong solution driven by a different noise process. Boundary-preservation is ensured by the use of Lie--Trotter time splitting followed by exact simulation and exact integration. Numerical experiments confirm the theoretical results and demonstrate the effectiveness of the proposed Lie--Trotter-Exact (LTE) scheme compared to existing methods for SPDEs.

We propose and justify a matrix reduction method for calculating the optimal approximation of an observed matrix $A \in {\mathbb C}^{m \times n}$ by a sum $\sum_{i=1}^p \sum_{j=1}^q B_iX_{ij}C_j$ of matrix products where each $B_i \in {\mathbb C}^{m \times g_i}$ and $C_j \in {\mathbb C}^{h_j \times n}$ is known and where the unknown matrix kernels $X_{ij}$ are determined by minimizing the Frobenius norm of the error. The sum can be represented as a bounded linear mapping $BXC$ with unknown kernel $X$ from a prescribed subspace ${\mathcal T} \subseteq {\mathbb C}^n$ onto a prescribed subspace ${\mathcal S} \subseteq {\mathbb C}^m$ defined respectively by the collective domains and ranges of the given matrices $C_1,\ldots,C_q$ and $B_1,\ldots,B_p$. We show that the optimal kernel is $X = B^{\dag}AC^{\dag}$ and that the optimal approximation $BB^{\dag}AC^{\dag}C$ is the projection of the observed mapping $A$ onto a mapping from ${\mathcal T}$ to ${\mathcal S}$. If $A$ is large $B$ and $C$ may also be large and direct calculation of $B^{\dag}$ and $C^{\dag}$ becomes unwieldy and inefficient. { The proposed method avoids} this difficulty by reducing the solution process to finding the pseudo-inverses of a collection of much smaller matrices. This significantly reduces the computational burden.

We study the finite element approximation of problems involving the weighted $p$-Laplacian for $p \in (1,\infty)$ and weights belonging to the Muckenhoupt class $A_1$. In particular, we consider an equation and an obstacle problem for the weighted $p$-Laplacian and derive error estimates in both cases. The analysis is based on the language of weighted Orlicz and Orlicz--Sobolev spaces.

We consider a fully discretized numerical scheme for parabolic stochastic partial differential equations with multiplicative noise. Our abstract framework can be applied to formulate a non-iterative domain decomposition approach. Such methods can help to parallelize the code and therefore lead to a more efficient implementation. The domain decomposition is integrated through the Douglas-Rachford splitting scheme, where one split operator acts on one part of the domain. For an efficient space discretization of the underlying equation, we chose the discontinuous Galerkin method as this suits the parallelization strategy well. For this fully discretized scheme, we provide a strong space-time convergence result. We conclude the manuscript with numerical experiments validating our theoretical findings.

We propose a $C^0$ interior penalty method for the fourth-order stream function formulation of the surface Stokes problem. The scheme utilizes continuous, piecewise polynomial spaces defined on an approximate surface. We show that the resulting discretization is positive definite and derive error estimates in various norms in terms of the polynomial degree of the finite element space as well as the polynomial degree to define the geometry approximation. A notable feature of the scheme is that it does not explicitly depend on the Gauss curvature of the surface. This is achieved via a novel integration-by-parts formula for the surface biharmonic operator.

We consider the problem of causal inference based on observational data (or the related missing data problem) with a binary or discrete treatment variable. In that context, we study inference for the counterfactual density functions and contrasts thereof, which can provide more nuanced information than counterfactual means and the average treatment effect. We impose the shape-constraint of log-concavity, a type of unimodality constraint, on the counterfactual densities, and then develop doubly robust estimators of the log-concave counterfactual density based on augmented inverse-probability weighted pseudo-outcomes. We provide conditions under which the estimator is consistent in various global metrics. We also develop asymptotically valid pointwise confidence intervals for the counterfactual density functions and differences and ratios thereof, which serve as a building block for more comprehensive analyses of distributional differences. We also present a method for using our estimator to implement density confidence bands.

Two sequential estimators are proposed for the odds p/(1-p) and log odds log(p/(1-p)) respectively, using independent Bernoulli random variables with parameter p as inputs. The estimators are unbiased, and guarantee that the variance of the estimation error divided by the true value of the odds, or the variance of the estimation error of the log odds, are less than a target value for any p in (0,1). The estimators are close to optimal in the sense of Wolfowitz's bound.

北京阿比特科技有限公司