The noncommutative sum-of-squares (ncSoS) hierarchy was introduced by Navascu\'{e}s-Pironio-Ac\'{i}n as a sequence of semidefinite programming relaxations for approximating values of noncommutative polynomial optimization problems, which were originally intended to generalize quantum values of nonlocal games. Recent work has started to analyze the hierarchy for approximating ground energies of local Hamiltonians, initially through rounding algorithms which output product states for degree-2 ncSoS applied to Quantum Max-Cut. Some rounding methods are known which output entangled states, but they use degree-4 ncSoS. Based on this, Hwang-Neeman-Parekh-Thompson-Wright conjectured that degree-2 ncSoS cannot beat product state approximations for Quantum Max-Cut and gave a partial proof relying on a conjectural generalization of Borrell's inequality. In this work we consider a family of Hamiltonians (called the quantum rotor model in condensed matter literature or lattice $O(k)$ vector model in quantum field theory) with infinite-dimensional local Hilbert space $L^{2}(S^{k - 1})$, and show that a degree-2 ncSoS relaxation approximates the ground state energy better than any product state.
By using the stochastic particle method, the truncated Euler-Maruyama (TEM) method is proposed for numerically solving McKean-Vlasov stochastic differential equations (MV-SDEs), possibly with both drift and diffusion coefficients having super-linear growth in the state variable. Firstly, the result of the propagation of chaos in the L^q (q\geq 2) sense is obtained under general assumptions. Then, the standard 1/2-order strong convergence rate in the L^q sense of the proposed method corresponding to the particle system is derived by utilizing the stopping time analysis technique. Furthermore, long-time dynamical properties of MV-SDEs, including the moment boundedness, stability, and the existence and uniqueness of the invariant probability measure, can be numerically realized by the TEM method. Additionally, it is proven that the numerical invariant measure converges to the underlying one of MV-SDEs in the L^2-Wasserstein metric. Finally, the conclusions obtained in this paper are verified through examples and numerical simulations.
This work deals with an inverse source problem for the biharmonic wave equation. A two-stage numerical method is proposed to identify the unknown source from the multi-frequency phaseless data. In the first stage, we introduce some artificially auxiliary point sources to the inverse source system and establish a phase retrieval formula. Theoretically, we point out that the phase can be uniquely determined and estimate the stability of this phase retrieval approach. Once the phase information is retrieved, the Fourier method is adopted to reconstruct the source function from the phased multi-frequency data. The proposed method is easy-to-implement and there is no forward solver involved in the reconstruction. Numerical experiments are conducted to verify the performance of the proposed method.
We study least-squares trace regression when the parameter is the sum of a $r$-low-rank matrix and a $s$-sparse matrix and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions and feature-dependent noise, we highlight three needed design properties, each one derived from a different process inequality: a "product process inequality", "Chevet's inequality" and a "multiplier process inequality". These properties handle, simultaneously, additive decomposition, label contamination and design-noise interaction. They imply the near-optimality of a tractable estimator with respect to the effective dimensions $d_{eff,r}$ and $d_{eff,s}$ of the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. The near-optimal rate is $\mathsf{r}(n,d_{eff,r}) + \mathsf{r}(n,d_{eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon)$, where $\mathsf{r}(n,d_{eff,r})+\mathsf{r}(n,d_{eff,s})$ is the optimal rate in average with no contamination. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Without matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Our estimators are based on "sorted" versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of "sorted" Huber's losses over the classical Huber's loss.
The mutual-visibility problem in a graph $G$ asks for the cardinality of a largest set of vertices $S\subseteq V(G)$ so that for any two vertices $x,y\in S$ there is a shortest $x,y$-path $P$ so that all internal vertices of $P$ are not in $S$. This is also said as $x,y$ are visible with respect to $S$, or $S$-visible for short. Variations of this problem are known, based on the extension of the visibility property of vertices that are in and/or outside $S$. Such variations are called total, outer and dual mutual-visibility problems. This work is focused on studying the corresponding four visibility parameters in graphs of diameter two, throughout showing bounds and/or closed formulae for these parameters. The mutual-visibility problem in the Cartesian product of two complete graphs is equivalent to (an instance of) the celebrated Zarankievicz's problem. Here we study the dual and outer mutual-visibility problem for the Cartesian product of two complete graphs and all the mutual-visibility problems for the direct product of such graphs as well. We also study all the mutual-visibility problems for the line graphs of complete and complete bipartite graphs. As a consequence of this study, we present several relationships between the mentioned problems and some instances of the classical Tur\'an problem. Moreover, we study the visibility problems for cographs and several non-trivial diameter-two graphs of minimum size.
We present a method that employs physics-informed deep learning techniques for parametrically solving partial differential equations. The focus is on the steady-state heat equations within heterogeneous solids exhibiting significant phase contrast. Similar equations manifest in diverse applications like chemical diffusion, electrostatics, and Darcy flow. The neural network aims to establish the link between the complex thermal conductivity profiles and temperature distributions, as well as heat flux components within the microstructure, under fixed boundary conditions. A distinctive aspect is our independence from classical solvers like finite element methods for data. A noteworthy contribution lies in our novel approach to defining the loss function, based on the discretized weak form of the governing equation. This not only reduces the required order of derivatives but also eliminates the need for automatic differentiation in the construction of loss terms, accepting potential numerical errors from the chosen discretization method. As a result, the loss function in this work is an algebraic equation that significantly enhances training efficiency. We benchmark our methodology against the standard finite element method, demonstrating accurate yet faster predictions using the trained neural network for temperature and flux profiles. We also show higher accuracy by using the proposed method compared to purely data-driven approaches for unforeseen scenarios.
We introduce in this paper the numerical analysis of high order both in time and space Lagrange-Galerkin methods for the conservative formulation of the advection-diffusion equation. As time discretization scheme we consider the Backward Differentiation Formulas up to order $q=5$. The development and analysis of the methods are performed in the framework of time evolving finite elements presented in C. M. Elliot and T. Ranner, IMA Journal of Numerical Analysis \textbf{41}, 1696-1845 (2021). The error estimates show through their dependence on the parameters of the equation the existence of different regimes in the behavior of the numerical solution; namely, in the diffusive regime, that is, when the diffusion parameter $\mu$ is large, the error is $O(h^{k+1}+\Delta t^{q})$, whereas in the advective regime, $\mu \ll 1$, the convergence is $O(\min (h^{k},\frac{h^{k+1} }{\Delta t})+\Delta t^{q})$. It is worth remarking that the error constant does not have exponential $\mu ^{-1}$ dependence.
There is a folkloric belief that a depth-$\Theta(m)$ quantum circuit is needed to estimate the trace of the product of $m$ density matrices (i.e., a multivariate trace), a subroutine crucial to applications in condensed matter and quantum information science. We prove that this belief is overly conservative by constructing a constant quantum-depth circuit for the task, inspired by the method of Shor error correction. Furthermore, our circuit demands only local gates in a two dimensional circuit -- we show how to implement it in a highly parallelized way on an architecture similar to that of Google's Sycamore processor. With these features, our algorithm brings the central task of multivariate trace estimation closer to the capabilities of near-term quantum processors. We instantiate the latter application with a theorem on estimating nonlinear functions of quantum states with "well-behaved" polynomial approximations.
This overview is devoted to splitting methods, a class of numerical integrators intended for differential equations that can be subdivided into different problems easier to solve than the original system. Closely connected with this class of integrators are composition methods, in which one or several low-order schemes are composed to construct higher-order numerical approximations to the exact solution. We analyze in detail the order conditions that have to be satisfied by these classes of methods to achieve a given order, and provide some insight about their qualitative properties in connection with geometric numerical integration and the treatment of highly oscillatory problems. Since splitting methods have received considerable attention in the realm of partial differential equations, we also cover this subject in the present survey, with special attention to parabolic equations and their problems. An exhaustive list of methods of different orders is collected and tested on simple examples. Finally, some applications of splitting methods in different areas, ranging from celestial mechanics to statistics, are also provided.
A well-balanced second-order finite volume scheme is proposed and analyzed for a 2 X 2 system of non-linear partial differential equations which describes the dynamics of growing sandpiles created by a vertical source on a flat, bounded rectangular table in multiple dimensions. To derive a second-order scheme, we combine a MUSCL type spatial reconstruction with strong stability preserving Runge-Kutta time stepping method. The resulting scheme is ensured to be well-balanced through a modified limiting approach that allows the scheme to reduce to well-balanced first-order scheme near the steady state while maintaining the second-order accuracy away from it. The well-balanced property of the scheme is proven analytically in one dimension and demonstrated numerically in two dimensions. Additionally, numerical experiments reveal that the second-order scheme reduces finite time oscillations, takes fewer time iterations for achieving the steady state and gives sharper resolutions of the physical structure of the sandpile, as compared to the existing first-order schemes of the literature.
Starting from the Kirchhoff-Huygens representation and Duhamel's principle of time-domain wave equations, we propose novel butterfly-compressed Hadamard integrators for self-adjoint wave equations in both time and frequency domain in an inhomogeneous medium. First, we incorporate the leading term of Hadamard's ansatz into the Kirchhoff-Huygens representation to develop a short-time valid propagator. Second, using the Fourier transform in time, we derive the corresponding Eulerian short-time propagator in frequency domain; on top of this propagator, we further develop a time-frequency-time (TFT) method for the Cauchy problem of time-domain wave equations. Third, we further propose the time-frequency-time-frequency (TFTF) method for the corresponding point-source Helmholtz equation, which provides Green's functions of the Helmholtz equation for all angular frequencies within a given frequency band. Fourth, to implement TFT and TFTF methods efficiently, we introduce butterfly algorithms to compress oscillatory integral kernels at different frequencies. As a result, the proposed methods can construct wave field beyond caustics implicitly and advance spatially overturning waves in time naturally with quasi-optimal computational complexity and memory usage. Furthermore, once constructed the Hadamard integrators can be employed to solve both time-domain wave equations with various initial conditions and frequency-domain wave equations with different point sources. Numerical examples for two-dimensional wave equations illustrate the accuracy and efficiency of the proposed methods.