亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analyzing the behavior of ReLU neural networks often hinges on understanding the relationships between their parameters and the functions they implement. This paper proves a new bound on function distances in terms of the so-called path-metrics of the parameters. Since this bound is intrinsically invariant with respect to the rescaling symmetries of the networks, it sharpens previously known bounds. It is also, to the best of our knowledge, the first bound of its kind that is broadly applicable to modern networks such as ResNets, VGGs, U-nets, and many more. In contexts such as network pruning and quantization, the proposed path-metrics can be efficiently computed using only two forward passes. Besides its intrinsic theoretical interest, the bound yields not only novel theoretical generalization bounds, but also a promising proof of concept for rescaling-invariant pruning.

相關內容

We describe a randomized algorithm for producing a near-optimal hierarchical off-diagonal low-rank (HODLR) approximation to an $n\times n$ matrix $\mathbf{A}$, accessible only though matrix-vector products with $\mathbf{A}$ and $\mathbf{A}^{\mathsf{T}}$. We prove that, for the rank-$k$ HODLR approximation problem, our method achieves a $(1+\beta)^{\log(n)}$-optimal approximation in expected Frobenius norm using $O(k\log(n)/\beta^3)$ matrix-vector products. In particular, the algorithm obtains a $(1+\varepsilon)$-optimal approximation with $O(k\log^4(n)/\varepsilon^3)$ matrix-vector products, and for any constant $c$, an $n^c$-optimal approximation with $O(k \log(n))$ matrix-vector products. Apart from matrix-vector products, the additional computational cost of our method is just $O(n \operatorname{poly}(\log(n), k, \beta))$. We complement the upper bound with a lower bound, which shows that any matrix-vector query algorithm requires at least $\Omega(k\log(n) + k/\varepsilon)$ queries to obtain a $(1+\varepsilon)$-optimal approximation. Our algorithm can be viewed as a robust version of widely used "peeling" methods for recovering HODLR matrices and is, to the best of our knowledge, the first matrix-vector query algorithm to enjoy theoretical worst-case guarantees for approximation by any hierarchical matrix class. To control the propagation of error between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank approximation, which shows that the widely used Generalized Nystr\"om method enjoys inherent stability when implemented with noisy matrix-vector products. We also introduced a novel randomly perforated matrix sketching method to further control the error in the peeling algorithm.

Imaging genetics aims to uncover the hidden relationship between imaging quantitative traits (QTs) and genetic markers (e.g. single nucleotide polymorphism (SNP)), and brings valuable insights into the pathogenesis of complex diseases, such as cancers and cognitive disorders (e.g. the Alzheimer's Disease). However, most linear models in imaging genetics didn't explicitly model the inner relationship among QTs, which might miss some potential efficiency gains from information borrowing across brain regions. In this work, we developed a novel Bayesian regression framework for identifying significant associations between QTs and genetic markers while explicitly modeling spatial dependency between QTs, with the main contributions as follows. Firstly, we developed a spatial-correlated multitask linear mixed-effects model (LMM) to account for dependencies between QTs. We incorporated a population-level mixed effects term into the model, taking full advantage of the dependent structure of brain imaging-derived QTs. Secondly, we implemented the model in the Bayesian framework and derived a Markov chain Monte Carlo (MCMC) algorithm to achieve the model inference. Further, we incorporated the MCMC samples with the Cauchy combination test (CCT) to examine the association between SNPs and QTs, which avoided computationally intractable multi-test issues. The simulation studies indicated improved power of our proposed model compared to classic models where inner dependencies of QTs were not modeled. We also applied the new spatial model to an imaging dataset obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

This work aims to extend the well-known high-order WENO finite-difference methods for systems of conservation laws to nonconservative hyperbolic systems. The main difficulty of these systems both from the theoretical and the numerical points of view comes from the fact that the definition of weak solution is not unique: according to the theory developed by Dal Maso, LeFloch, and Murat in 1995, it depends on the choice of a family of paths. A general strategy is proposed here in which WENO operators are not only used to reconstruct fluxes but also the nonconservative products of the system. Moreover, if a Roe linearization is available, the nonconservative products can be computed through matrix-vector operations instead of path-integrals. The methods are extended to problems with source terms and two different strategies are introduced to obtain well-balanced schemes. These numerical schemes will be then applied to the two-layer shallow water equations in one- and two- dimensions to obtain high-order methods that preserve water-at-rest steady states.

We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.

We present a geometric framework for the processing of SPD-valued data that preserves subspace structures and is based on the efficient computation of extreme generalized eigenvalues. This is achieved through the use of the Thompson geometry of the semidefinite cone. We explore a particular geodesic space structure in detail and establish several properties associated with it. Finally, we review a novel inductive mean of SPD matrices based on this geometry.

Spatial models for areal data are often constructed such that all pairs of adjacent regions are assumed to have near-identical spatial autocorrelation. In practice, data can exhibit dependence structures more complicated than can be represented under this assumption. In this article we develop a new model for spatially correlated data observed on graphs, which can flexibly represented many types of spatial dependence patterns while retaining aspects of the original graph geometry. Our method implies an embedding of the graph into Euclidean space wherein covariance can be modeled using traditional covariance functions, such as those from the Mat\'{e}rn family. We parameterize our model using a class of graph metrics compatible with such covariance functions, and which characterize distance in terms of network flow, a property useful for understanding proximity in many ecological settings. By estimating the parameters underlying these metrics, we recover the "intrinsic distances" between graph nodes, which assist in the interpretation of the estimated covariance and allow us to better understand the relationship between the observed process and spatial domain. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive models and their variants, and illustrate advantages of our method over traditional approaches. We fit our model to bird abundance data for several species in North Carolina, and show how it provides insight into the interactions between species-specific spatial distributions and geography.

There is an ongoing need for scalable tools to aid researchers in both retrospective and prospective standardization of discrete entity types -- such as disease names, cell types or chemicals -- that are used in metadata associated with biomedical data. When metadata are not well-structured or precise, the associated data are harder to find and are often burdensome to reuse, analyze or integrate with other datasets due to the upfront curation effort required to make the data usable -- typically through retrospective standardization and cleaning of the (meta)data. With the goal of facilitating the task of standardizing metadata -- either in bulk or in a one-by-one fashion; for example, to support auto-completion of biomedical entities in forms -- we have developed an open-source tool called text2term that maps free-text descriptions of biomedical entities to controlled terms in ontologies. The tool is highly configurable and can be used in multiple ways that cater to different users and expertise levels -- it is available on PyPI and can be used programmatically as any Python package; it can also be used via a command-line interface; or via our hosted, graphical user interface-based Web application (//text2term.hms.harvard.edu); or by deploying a local instance of our interactive application using Docker.

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司