Deep convolutional networks for semantic image segmentation typically require large-scale labeled data, e.g. ImageNet and MS COCO, for network pre-training. To reduce annotation efforts, self-supervised semantic segmentation is recently proposed to pre-train a network without any human-provided labels. The key of this new form of learning is to design a proxy task (e.g. image colorization), from which a discriminative loss can be formulated on unlabeled data. Many proxy tasks, however, lack the critical supervision signals that could induce discriminative representation for the target image segmentation task. Thus self-supervision's performance is still far from that of supervised pre-training. In this study, we overcome this limitation by incorporating a "mix-and-match" (M&M) tuning stage in the self-supervision pipeline. The proposed approach is readily pluggable to many self-supervision methods and does not use more annotated samples than the original process. Yet, it is capable of boosting the performance of target image segmentation task to surpass fully-supervised pre-trained counterpart. The improvement is made possible by better harnessing the limited pixel-wise annotations in the target dataset. Specifically, we first introduce the "mix" stage, which sparsely samples and mixes patches from the target set to reflect rich and diverse local patch statistics of target images. A "match" stage then forms a class-wise connected graph, which can be used to derive a strong triplet-based discriminative loss for fine-tuning the network. Our paradigm follows the standard practice in existing self-supervised studies and no extra data or label is required. With the proposed M&M approach, for the first time, a self-supervision method can achieve comparable or even better performance compared to its ImageNet pre-trained counterpart on both PASCAL VOC2012 dataset and CityScapes dataset.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}
In this paper, we aim to improve the performance of semantic image segmentation in a semi-supervised setting in which training is effectuated with a reduced set of annotated images and additional non-annotated images. We present a method based on an ensemble of deep segmentation models. Each model is trained on a subset of the annotated data, and uses the non-annotated images to exchange information with the other models, similar to co-training. Even if each model learns on the same non-annotated images, diversity is preserved with the use of adversarial samples. Our results show that this ability to simultaneously train models, which exchange knowledge while preserving diversity, leads to state-of-the-art results on two challenging medical image datasets.
In this work, we study the problem of training deep networks for semantic image segmentation using only a fraction of annotated images, which may significantly reduce human annotation efforts. Particularly, we propose a strategy that exploits the unpaired image style transfer capabilities of CycleGAN in semi-supervised segmentation. Unlike recent works using adversarial learning for semi-supervised segmentation, we enforce cycle consistency to learn a bidirectional mapping between unpaired images and segmentation masks. This adds an unsupervised regularization effect that boosts the segmentation performance when annotated data is limited. Experiments on three different public segmentation benchmarks (PASCAL VOC 2012, Cityscapes and ACDC) demonstrate the effectiveness of the proposed method. The proposed model achieves 2-4% of improvement with respect to the baseline and outperforms recent approaches for this task, particularly in low labeled data regime.
Despite much success, deep learning generally does not perform well with small labeled training sets. In these scenarios, data augmentation has shown much promise in alleviating the need for more labeled data, but it so far has mostly been applied in supervised settings and achieved limited gains. In this work, we propose to apply data augmentation to unlabeled data in a semi-supervised learning setting. Our method, named Unsupervised Data Augmentation or UDA, encourages the model predictions to be consistent between an unlabeled example and an augmented unlabeled example. Unlike previous methods that use random noise such as Gaussian noise or dropout noise, UDA has a small twist in that it makes use of harder and more realistic noise generated by state-of-the-art data augmentation methods. This small twist leads to substantial improvements on six language tasks and three vision tasks even when the labeled set is extremely small. For example, on the IMDb text classification dataset, with only 20 labeled examples, UDA achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples. On standard semi-supervised learning benchmarks CIFAR-10 and SVHN, UDA outperforms all previous approaches and achieves an error rate of 2.7% on CIFAR-10 with only 4,000 examples and an error rate of 2.85% on SVHN with only 250 examples, nearly matching the performance of models trained on the full sets which are one or two orders of magnitude larger. UDA also works well on large-scale datasets such as ImageNet. When trained with 10% of the labeled set, UDA improves the top-1/top-5 accuracy from 55.1/77.3% to 68.7/88.5%. For the full ImageNet with 1.3M extra unlabeled data, UDA further pushes the performance from 78.3/94.4% to 79.0/94.5%.
This work tackles the problem of semi-supervised learning of image classifiers. Our main insight is that the field of semi-supervised learning can benefit from the quickly advancing field of self-supervised visual representation learning. Unifying these two approaches, we propose the framework of self-supervised semi-supervised learning ($S^4L$) and use it to derive two novel semi-supervised image classification methods. We demonstrate the effectiveness of these methods in comparison to both carefully tuned baselines, and existing semi-supervised learning methods. We then show that $S^4L$ and existing semi-supervised methods can be jointly trained, yielding a new state-of-the-art result on semi-supervised ILSVRC-2012 with 10% of labels.
3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths and weaknesses, and by unifying them together, one may be able to achieve more accurate results. In this paper, we propose a new ensemble learning framework for 3D biomedical image segmentation that combines the merits of 2D and 3D models. First, we develop a fully convolutional network based meta-learner to learn how to improve the results from 2D and 3D models (base-learners). Then, to minimize over-fitting for our sophisticated meta-learner, we devise a new training method that uses the results of the base-learners as multiple versions of "ground truths". Furthermore, since our new meta-learner training scheme does not depend on manual annotation, it can utilize abundant unlabeled 3D image data to further improve the model. Extensive experiments on two public datasets (the HVSMR 2016 Challenge dataset and the mouse piriform cortex dataset) show that our approach is effective under fully-supervised, semi-supervised, and transductive settings, and attains superior performance over state-of-the-art image segmentation methods.
The per-pixel cross-entropy loss (CEL) has been widely used in structured output prediction tasks as a spatial extension of generic image classification. However, its i.i.d. assumption neglects the structural regularity present in natural images. Various attempts have been made to incorporate structural reasoning mostly through structure priors in a cooperative way where co-occuring patterns are encouraged. We, on the other hand, approach this problem from an opposing angle and propose a new framework for training such structured prediction networks via an adversarial process, in which we train a structure analyzer that provides the supervisory signals, the adversarial structure matching loss (ASML). The structure analyzer is trained to maximize ASML, or to exaggerate recurring structural mistakes usually among co-occurring patterns. On the contrary, the structured output prediction network is trained to reduce those mistakes and is thus enabled to distinguish fine-grained structures. As a result, training structured output prediction networks using ASML reduces contextual confusion among objects and improves boundary localization. We demonstrate that ASML outperforms its counterpart CEL especially in context and boundary aspects on figure-ground segmentation and semantic segmentation tasks with various base architectures, such as FCN, U-Net, DeepLab, and PSPNet.
For the challenging semantic image segmentation task the most efficient models have traditionally combined the structured modelling capabilities of Conditional Random Fields (CRFs) with the feature extraction power of CNNs. In more recent works however, CRF post-processing has fallen out of favour. We argue that this is mainly due to the slow training and inference speeds of CRFs, as well as the difficulty of learning the internal CRF parameters. To overcome both issues we propose to add the assumption of conditional independence to the framework of fully-connected CRFs. This allows us to reformulate the inference in terms of convolutions, which can be implemented highly efficiently on GPUs. Doing so speeds up inference and training by a factor of more then 100. All parameters of the convolutional CRFs can easily be optimized using backpropagation. To facilitating further CRF research we make our implementation publicly available. Please visit: //github.com/MarvinTeichmann/ConvCRF
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.
We propose a novel locally adaptive learning estimator for enhancing the inter- and intra- discriminative capabilities of Deep Neural Networks, which can be used as improved loss layer for semantic image segmentation tasks. Most loss layers compute pixel-wise cost between feature maps and ground truths, ignoring spatial layouts and interactions between neighboring pixels with same object category, and thus networks cannot be effectively sensitive to intra-class connections. Stride by stride, our method firstly conducts adaptive pooling filter operating over predicted feature maps, aiming to merge predicted distributions over a small group of neighboring pixels with same category, and then it computes cost between the merged distribution vector and their category label. Such design can make groups of neighboring predictions from same category involved into estimations on predicting correctness with respect to their category, and hence train networks to be more sensitive to regional connections between adjacent pixels based on their categories. In the experiments on Pascal VOC 2012 segmentation datasets, the consistently improved results show that our proposed approach achieves better segmentation masks against previous counterparts.