This paper proposes a novel unsupervised domain adaption (UDA) method based on contrastive bi-projector (CBP), which can improve the existing UDA methods. It is called CBPUDA here, which effectively promotes the feature extractors (FEs) to reduce the generation of ambiguous features for classification and domain adaption. The CBP differs from traditional bi-classifier-based methods at that these two classifiers are replaced with two projectors of performing a mapping from the input feature to two distinct features. These two projectors and the FEs in the CBPUDA can be trained adversarially to obtain more refined decision boundaries so that it can possess powerful classification performance. Two properties of the proposed loss function are analyzed here. The first property is to derive an upper bound of joint prediction entropy, which is used to form the proposed loss function, contrastive discrepancy (CD) loss. The CD loss takes the advantages of the contrastive learning and the bi-classifier. The second property is to analyze the gradient of the CD loss and then overcome the drawback of the CD loss. The result of the second property is utilized in the development of the gradient scaling (GS) scheme in this paper. The GS scheme can be exploited to tackle the unstable problem of the CD loss because training the CBPUDA requires using contrastive learning and adversarial learning at the same time. Therefore, using the CD loss with the GS scheme overcomes the problem mentioned above to make features more compact for intra-class and distinguishable for inter-class. Experimental results express that the CBPUDA is superior to conventional UDA methods under consideration in this paper for UDA and fine-grained UDA tasks.
We propose a novel framework for incorporating unlabeled data into semi-supervised classification problems, where scenarios involving the minimization of either i) adversarially robust or ii) non-robust loss functions have been considered. Notably, we allow the unlabeled samples to deviate slightly (in total variation sense) from the in-domain distribution. The core idea behind our framework is to combine Distributionally Robust Optimization (DRO) with self-supervised training. As a result, we also leverage efficient polynomial-time algorithms for the training stage. From a theoretical standpoint, we apply our framework on the classification problem of a mixture of two Gaussians in $\mathbb{R}^d$, where in addition to the $m$ independent and labeled samples from the true distribution, a set of $n$ (usually with $n\gg m$) out of domain and unlabeled samples are given as well. Using only the labeled data, it is known that the generalization error can be bounded by $\propto\left(d/m\right)^{1/2}$. However, using our method on both isotropic and non-isotropic Gaussian mixture models, one can derive a new set of analytically explicit and non-asymptotic bounds which show substantial improvement on the generalization error compared to ERM. Our results underscore two significant insights: 1) out-of-domain samples, even when unlabeled, can be harnessed to narrow the generalization gap, provided that the true data distribution adheres to a form of the ``cluster assumption", and 2) the semi-supervised learning paradigm can be regarded as a special case of our framework when there are no distributional shifts. We validate our claims through experiments conducted on a variety of synthetic and real-world datasets.
In this paper, a type of novel projection-based, time-segmented reduced order model (ROM) is proposed for dynamic fluid-structure interaction (FSI) problems based upon the arbitrary Lagrangian--Eulerian (ALE)-finite element method (FEM) in a monolithic frame, where spatially, each variable is separated from others in terms of their attribution (fluid/structure), category (velocity/pressure) and component (horizontal/vertical) while temporally, the proper orthogonal decomposition (POD) bases are constructed in some deliberately partitioned time segments tailored through extensive numerical trials. By the combination of spatial and temporal decompositions, the developed ROM approach enables prolonged simulations under prescribed accuracy thresholds. Numerical experiments are carried out to compare numerical performances of the proposed ROM with corresponding full-order model (FOM) by solving a two-dimensional FSI benchmark problem that involves a vibrating elastic beam in the fluid, where the performance of offline ROM on perturbed physical parameters in the online phase is investigated as well. Extensive numerical results demonstrate that the proposed ROM has a comparable accuracy to while much higher efficiency than the FOM. The developed ROM approach is dimension-independent and can be seamlessly extended to solve high dimensional FSI problems.
Several applications in time series forecasting require predicting multiple steps ahead. Despite the vast amount of literature in the topic, both classical and recent deep learning based approaches have mostly focused on minimising performance averaged over the predicted window. We observe that this can lead to disparate distributions of errors across forecasting steps, especially for recent transformer architectures trained on popular forecasting benchmarks. That is, optimising performance on average can lead to undesirably large errors at specific time-steps. In this work, we present a Constrained Learning approach for long-term time series forecasting that aims to find the best model in terms of average performance that respects a user-defined upper bound on the loss at each time-step. We call our approach loss shaping constraints because it imposes constraints on the loss at each time step, and leverage recent duality results to show that despite its non-convexity, the resulting problem has a bounded duality gap. We propose a practical Primal-Dual algorithm to tackle it, and demonstrate that the proposed approach exhibits competitive average performance in time series forecasting benchmarks, while shaping the distribution of errors across the predicted window.
Facial video inpainting plays a crucial role in a wide range of applications, including but not limited to the removal of obstructions in video conferencing and telemedicine, enhancement of facial expression analysis, privacy protection, integration of graphical overlays, and virtual makeup. This domain presents serious challenges due to the intricate nature of facial features and the inherent human familiarity with faces, heightening the need for accurate and persuasive completions. In addressing challenges specifically related to occlusion removal in this context, our focus is on the progressive task of generating complete images from facial data covered by masks, ensuring both spatial and temporal coherence. Our study introduces a network designed for expression-based video inpainting, employing generative adversarial networks (GANs) to handle static and moving occlusions across all frames. By utilizing facial landmarks and an occlusion-free reference image, our model maintains the user's identity consistently across frames. We further enhance emotional preservation through a customized facial expression recognition (FER) loss function, ensuring detailed inpainted outputs. Our proposed framework exhibits proficiency in eliminating occlusions from facial videos in an adaptive form, whether appearing static or dynamic on the frames, while providing realistic and coherent results.
This paper presents null-shot prompting. Null-shot prompting exploits hallucination in large language models (LLMs) by instructing LLMs to utilize information from the "Examples" section that never exists within the provided context to perform a task. While reducing hallucination is crucial and non-negligible for daily and critical uses of LLMs, we propose that in the current landscape in which these LLMs still hallucinate, it is possible, in fact, to exploit hallucination to increase performance in performing tasks compared to standard zero-shot prompting. Experiments with eight LLMs show improvements in performance across the majority of eight datasets, including reading comprehension, arithmetic reasoning, and closed-book question answering. The observed inconsistency in increased relative performance across the LLMs also potentially indicates a different degree of inherent hallucination in each model. These differences show that it is possible to utilize null-shot prompting as a way to detect degrees of hallucination in LLMs using existing benchmarking datasets. We also perform ablation studies, including experimenting with a modified version of null-shot prompting that incorporates ideas from zero-shot chain-of-thought prompting, which shows different trends of results.
This paper introduces a novel Perturbation-Assisted Inference (PAI) framework utilizing synthetic data generated by the Perturbation-Assisted Sample Synthesis (PASS) method. The framework focuses on uncertainty quantification in complex data scenarios, particularly involving unstructured data while utilizing deep learning models. On one hand, PASS employs a generative model to create synthetic data that closely mirrors raw data while preserving its rank properties through data perturbation, thereby enhancing data diversity and bolstering privacy. By incorporating knowledge transfer from large pre-trained generative models, PASS enhances estimation accuracy, yielding refined distributional estimates of various statistics via Monte Carlo experiments. On the other hand, PAI boasts its statistically guaranteed validity. In pivotal inference, it enables precise conclusions even without prior knowledge of the pivotal's distribution. In non-pivotal situations, we enhance the reliability of synthetic data generation by training it with an independent holdout sample. We demonstrate the effectiveness of PAI in advancing uncertainty quantification in complex, data-driven tasks by applying it to diverse areas such as image synthesis, sentiment word analysis, multimodal inference, and the construction of prediction intervals.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.