亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explore approximation algorithms for the $d$-dimensional geometric bin packing problem ($d$BP). Caprara (MOR 2008) gave a harmonic-based algorithm for $d$BP having an asymptotic approximation ratio (AAR) of $T_{\infty}^{d-1}$ (where $T_{\infty} \approx 1.691$). However, their algorithm doesn't allow items to be rotated. This is in contrast to some common applications of $d$BP, like packing boxes into shipping containers. We give approximation algorithms for $d$BP when items can be orthogonally rotated about all or a subset of axes. We first give a fast and simple harmonic-based algorithm having AAR $T_{\infty}^{d}$. We next give a more sophisticated harmonic-based algorithm, which we call $\mathtt{HGaP}_k$, having AAR $T_{\infty}^{d-1}(1+\epsilon)$. This gives an AAR of roughly $2.860 + \epsilon$ for 3BP with rotations, which improves upon the best-known AAR of $4.5$. In addition, we study the multiple-choice bin packing problem that generalizes the rotational case. Here we are given $n$ sets of $d$-dimensional cuboidal items and we have to choose exactly one item from each set and then pack the chosen items. Our algorithms also work for the multiple-choice bin packing problem. We also give fast and simple approximation algorithms for the multiple-choice versions of $d$D strip packing and $d$D geometric knapsack.

相關內容

Hyperbolicity is a graph parameter related to how much a graph resembles a tree with respect to distances. Its computation is challenging as the main approaches consist in scanning all quadruples of the graph or using fast matrix multiplication as building block, both are not practical for large graphs. In this paper, we propose and evaluate an approach that uses a hierarchy of distance-k dominating sets to reduce the search space. This technique, compared to the previous best practical algorithms, enables us to compute the hyperbolicity of graphs with unprecedented size (up to a million nodes) and speeds up the computation of previously attainable graphs by up to 3 orders of magnitude while reducing the memory consumption by up to more than a factor of 23.

We consider the problem of scheduling to minimize mean response time in M/G/1 queues where only estimated job sizes (processing times) are known to the scheduler, where a job of true size $s$ has estimated size in the interval $[\beta s, \alpha s]$ for some $\alpha \geq \beta > 0$. We evaluate each scheduling policy by its approximation ratio, which we define to be the ratio between its mean response time and that of Shortest Remaining Processing Time (SRPT), the optimal policy when true sizes are known. Our question: is there a scheduling policy that (a) has approximation ratio near 1 when $\alpha$ and $\beta$ are near 1, (b) has approximation ratio bounded by some function of $\alpha$ and $\beta$ even when they are far from 1, and (c) can be implemented without knowledge of $\alpha$ and $\beta$? We first show that naively running SRPT using estimated sizes in place of true sizes is not such a policy: its approximation ratio can be arbitrarily large for any fixed $\beta < 1$. We then provide a simple variant of SRPT for estimated sizes that satisfies criteria (a), (b), and (c). In particular, we prove its approximation ratio approaches 1 uniformly as $\alpha$ and $\beta$ approach 1. This is the first result showing this type of convergence for M/G/1 scheduling. We also study the Preemptive Shortest Job First (PSJF) policy, a cousin of SRPT. We show that, unlike SRPT, naively running PSJF using estimated sizes in place of true sizes satisfies criteria (b) and (c), as well as a weaker version of (a).

In this paper, we propose a new method for offline change-point detection on some parameters of the distribution of a random vector. We introduce a penalized maximum likelihood approach that can be efficiently computed by a dynamic programming algorithm or approximated by a fast greedy binary splitting algorithm. We prove both algorithms converge almost surely to the set of change-points under very general assumptions on the distribution and independent sampling of the random vector. In particular, we show the assumptions leading to the consistency of the algorithms are satisfied by categorical and Gaussian random variables. This new approach is motivated by the problem of identifying homozygosity islands on the genome of individuals in a population. Our method directly tackles the issue of identification of the homozygosity islands at the population level, without the need of analyzing single individuals and then combining the results, as is made nowadays in state-of-the-art approaches.

Kernel matrices are crucial in many learning tasks such as support vector machines or kernel ridge regression. The kernel matrix is typically dense and large-scale. Depending on the dimension of the feature space even the computation of all of its entries in reasonable time becomes a challenging task. For such dense matrices the cost of a matrix-vector product scales quadratically in the number of entries, if no customized methods are applied. We propose the use of an ANOVA kernel, where we construct several kernels based on lower-dimensional feature spaces for which we provide fast algorithms realizing the matrix-vector products. We employ the non-equispaced fast Fourier transform (NFFT), which is of linear complexity for fixed accuracy. Based on a feature grouping approach, we then show how the fast matrix-vector products can be embedded into a learning method choosing kernel ridge regression and the preconditioned conjugate gradient solver. We illustrate the performance of our approach on several data sets.

Motivated by applications to topological data analysis, we give an efficient algorithm for computing a (minimal) presentation of a bigraded $K[x,y]$-module $M$, where $K$ is a field. The algorithm takes as input a short chain complex of free modules $X\xrightarrow{f} Y \xrightarrow{g} Z$ such that $M\cong \ker{g}/\mathrm{im}{f}$. It runs in time $O(|X|^3+|Y|^3+|Z|^3)$ and requires $O(|X|^2+|Y|^2+|Z|^2)$ memory, where $|\cdot |$ denotes the rank. Given the presentation computed by our algorithm, the bigraded Betti numbers of $M$ are readily computed. Our approach is based on a simple matrix reduction algorithm, slight variants of which compute kernels of morphisms between free modules, minimal generating sets, and Gr\"obner bases. Our algorithm for computing minimal presentations has been implemented in RIVET, a software tool for the visualization and analysis of two-parameter persistent homology. In experiments on topological data analysis problems, our implementation outperforms the standard computational commutative algebra packages Singular and Macaulay2 by a wide margin.

In this paper, we study sequential testing problems with \emph{overlapping} hypotheses. We first focus on the simple problem of assessing if the mean $\mu$ of a Gaussian distribution is smaller or larger than a fixed $\epsilon>0$; if $\mu\in(-\epsilon,\epsilon)$, both answers are considered to be correct. Then, we consider PAC-best arm identification in a bandit model: given $K$ probability distributions on $\mathbb{R}$ with means $\mu_1,\dots,\mu_K$, we derive the asymptotic complexity of identifying, with risk at most $\delta$, an index $I\in\{1,\dots,K\}$ such that $\mu_I\geq \max_i\mu_i -\epsilon$. We provide non-asymptotic bounds on the error of a parallel General Likelihood Ratio Test, which can also be used for more general testing problems. We further propose lower bound on the number of observation needed to identify a correct hypothesis. Those lower bounds rely on information-theoretic arguments, and specifically on two versions of a change of measure lemma (a high-level form, and a low-level form) whose relative merits are discussed.

We introduce the following variant of the VC-dimension. Given $S \subseteq \{0, 1\}^n$ and a positive integer $d$, we define $\mathbb{U}_d(S)$ to be the size of the largest subset $I \subseteq [n]$ such that the projection of $S$ on every subset of $I$ of size $d$ is the $d$-dimensional cube. We show that determining the largest cardinality of a set with a given $\mathbb{U}_d$ dimension is equivalent to a Tur\'an-type problem related to the total number of cliques in a $d$-uniform hypergraph. This allows us to beat the Sauer--Shelah lemma for this notion of dimension. We use this to obtain several results on $\Sigma_3^k$-circuits, i.e., depth-$3$ circuits with top gate OR and bottom fan-in at most $k$: * Tight relationship between the number of satisfying assignments of a $2$-CNF and the dimension of the largest projection accepted by it, thus improving Paturi, Saks, and Zane (Comput. Complex. '00). * Improved $\Sigma_3^3$-circuit lower bounds for affine dispersers for sublinear dimension. Moreover, we pose a purely hypergraph-theoretic conjecture under which we get further improvement. * We make progress towards settling the $\Sigma_3^2$ complexity of the inner product function and all degree-$2$ polynomials over $\mathbb{F}_2$ in general. The question of determining the $\Sigma_3^3$ complexity of IP was recently posed by Golovnev, Kulikov, and Williams (ITCS'21).

Topological data analysis (TDA) studies the shape patterns of data. Persistent homology (PH) is a widely used method in TDA that summarizes homological features of data at multiple scales and stores them in persistence diagrams (PDs). In this paper, we propose a random persistence diagram generation (RPDG) method that generates a sequence of random PDs from the ones produced by the data. RPDG is underpinned by (i) a model based on pairwise interacting point processes for inference of persistence diagrams, and (ii) by a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm for generating samples of PDs. A first example, which is based on a synthetic dataset, demonstrates the efficacy of RPDG and provides a detailed comparison with other existing methods for sampling PDs. A second example demonstrates the utility of RPDG to solve a materials science problem given a real dataset of small sample size.

We study the problem of estimating the size of maximum matching and minimum vertex cover in sublinear time. Denoting the number of vertices by $n$ and the average degree in the graph by $\bar{d}$, we obtain the following results for both problems: * A multiplicative $(2+\epsilon)$-approximation that takes $\tilde{O}(n/\epsilon^2)$ time using adjacency list queries. * A multiplicative-additive $(2, \epsilon n)$-approximation in $\tilde{O}((\bar{d} + 1)/\epsilon^2)$ time using adjacency list queries. * A multiplicative-additive $(2, \epsilon n)$-approximation in $\tilde{O}(n/\epsilon^{3})$ time using adjacency matrix queries. All three results are provably time-optimal up to polylogarithmic factors culminating a long line of work on these problems. Our main contribution and the key ingredient leading to the bounds above is a new and near-tight analysis of the average query complexity of the randomized greedy maximal matching algorithm which improves upon a seminal result of Yoshida, Yamamoto, and Ito [STOC'09].

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司