Understanding the generalization abilities of modern machine learning algorithms has been a major research topic over the past decades. In recent years, the learning dynamics of Stochastic Gradient Descent (SGD) have been related to heavy-tailed dynamics. This has been successfully applied to generalization theory by exploiting the fractal properties of those dynamics. However, the derived bounds depend on mutual information (decoupling) terms that are beyond the reach of computability. In this work, we prove generalization bounds over the trajectory of a class of heavy-tailed dynamics, without those mutual information terms. Instead, we introduce a geometric decoupling term by comparing the learning dynamics (depending on the empirical risk) with an expected one (depending on the population risk). We further upper-bound this geometric term, by using techniques from the heavy-tailed and the fractal literature, making it fully computable. Moreover, as an attempt to tighten the bounds, we propose a PAC-Bayesian setting based on perturbed dynamics, in which the same geometric term plays a crucial role and can still be bounded using the techniques described above.
The robust generalization of deep learning models in the presence of inherent noise remains a significant challenge, especially when labels are subjective and noise is indiscernible in natural settings. This problem is particularly pronounced in many practical applications. In this paper, we address a special and important scenario of monitoring suicidal ideation, where time-series data, such as photoplethysmography (PPG), is susceptible to such noise. Current methods predominantly focus on image and text data or address artificially introduced noise, neglecting the complexities of natural noise in time-series analysis. To tackle this, we introduce a novel neural network model tailored for analyzing noisy physiological time-series data, named TNANet, which merges advanced encoding techniques with confidence learning, enhancing prediction accuracy. Another contribution of our work is the collection of a specialized dataset of PPG signals derived from real-world environments for suicidal ideation prediction. Employing this dataset, our TNANet achieves the prediction accuracy of 63.33% in a binary classification task, outperforming state-of-the-art models. Furthermore, comprehensive evaluations were conducted on three other well-known public datasets with artificially introduced noise to rigorously test the TNANet's capabilities. These tests consistently demonstrated TNANet's superior performance by achieving an accuracy improvement of more than 10% compared to baseline methods.
The success of reinforcement learning from human feedback (RLHF) in language model alignment is strongly dependent on the quality of the underlying reward model. In this paper, we present a novel approach to improve reward model quality by generating synthetic preference data, thereby augmenting the training dataset with on-policy, high-quality preference pairs. Motivated by the promising results of Best-of-N sampling strategies in language model training, we extend their application to reward model training. This results in a self-training strategy to generate preference pairs by selecting the best and worst candidates in a pool of responses to a given query. Empirically, we find that this approach improves the performance of any reward model, with an effect comparable to the addition of a similar quantity of human preference data. This work opens up new avenues of research for improving RLHF for language model alignment, by offering synthetic preference generation as a solution to reward modeling challenges.
Data similarity (or distance) computation is a fundamental research topic which fosters a variety of similarity-based machine learning and data mining applications. In big data analytics, it is impractical to compute the exact similarity of data instances due to high computational cost. To this end, the Locality Sensitive Hashing (LSH) technique has been proposed to provide accurate estimators for various similarity measures between sets or vectors in an efficient manner without the learning process. Structured data (e.g., sequences, trees and graphs), which are composed of elements and relations between the elements, are commonly seen in the real world, but the traditional LSH algorithms cannot preserve the structure information represented as relations between elements. In order to conquer the issue, researchers have been devoted to the family of the hierarchical LSH algorithms. In this paper, we explore the present progress of the research into hierarchical LSH from the following perspectives: 1) Data structures, where we review various hierarchical LSH algorithms for three typical data structures and uncover their inherent connections; 2) Applications, where we review the hierarchical LSH algorithms in multiple application scenarios; 3) Challenges, where we discuss some potential challenges as future directions.
The increasing need for causal analysis in large-scale industrial datasets necessitates the development of efficient and scalable causal algorithms for real-world applications. This paper addresses the challenge of scaling causal algorithms in the context of conducting causal analysis on extensive datasets commonly encountered in industrial settings. Our proposed solution involves enhancing the scalability of causal algorithm libraries, such as EconML, by leveraging the parallelism capabilities offered by the distributed computing framework Ray. We explore the potential of parallelizing key iterative steps within causal algorithms to significantly reduce overall runtime, supported by a case study that examines the impact on estimation times and costs. Through this approach, we aim to provide a more effective solution for implementing causal analysis in large-scale industrial applications.
We study the problem of feature selection in general machine learning (ML) context, which is one of the most critical subjects in the field. Although, there exist many feature selection methods, however, these methods face challenges such as scalability, managing high-dimensional data, dealing with correlated features, adapting to variable feature importance, and integrating domain knowledge. To this end, we introduce the ``Adaptive Feature Selection with Binary Masking" (AFS-BM) which remedies these problems. AFS-BM achieves this by joint optimization for simultaneous feature selection and model training. In particular, we do the joint optimization and binary masking to continuously adapt the set of features and model parameters during the training process. This approach leads to significant improvements in model accuracy and a reduction in computational requirements. We provide an extensive set of experiments where we compare AFS-BM with the established feature selection methods using well-known datasets from real-life competitions. Our results show that AFS-BM makes significant improvement in terms of accuracy and requires significantly less computational complexity. This is due to AFS-BM's ability to dynamically adjust to the changing importance of features during the training process, which an important contribution to the field. We openly share our code for the replicability of our results and to facilitate further research.
Recent empirical and theoretical studies have established the generalization capabilities of large machine learning models that are trained to (approximately or exactly) fit noisy data. In this work, we prove a surprising result that even if the ground truth itself is robust to adversarial examples, and the benignly overfitted model is benign in terms of the ``standard'' out-of-sample risk objective, this benign overfitting process can be harmful when out-of-sample data are subject to adversarial manipulation. More specifically, our main results contain two parts: (i) the min-norm estimator in overparameterized linear model always leads to adversarial vulnerability in the ``benign overfitting'' setting; (ii) we verify an asymptotic trade-off result between the standard risk and the ``adversarial'' risk of every ridge regression estimator, implying that under suitable conditions these two items cannot both be small at the same time by any single choice of the ridge regularization parameter. Furthermore, under the lazy training regime, we demonstrate parallel results on two-layer neural tangent kernel (NTK) model, which align with empirical observations in deep neural networks. Our finding provides theoretical insights into the puzzling phenomenon observed in practice, where the true target function (e.g., human) is robust against adverasrial attack, while beginly overfitted neural networks lead to models that are not robust.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.