亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose the Liquid-Graph Time-constant (LGTC) network, a continuous graph neural network(GNN) model for control of multi-agent systems based on therecent Liquid Time Constant (LTC) network. We analyse itsstability leveraging contraction analysis and propose a closed-form model that preserves the model contraction rate and doesnot require solving an ODE at each iteration. Compared todiscrete models like Graph Gated Neural Networks (GGNNs),the higher expressivity of the proposed model guaranteesremarkable performance while reducing the large amountof communicated variables normally required by GNNs. Weevaluate our model on a distributed multi-agent control casestudy (flocking) taking into account variable communicationrange and scalability under non-instantaneous communication

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網(wang)絡會(hui)議。 Publisher:IFIP。 SIT:

In this paper, we present a flow-based method for global optimization of continuous Sobolev functions, called Stein Boltzmann Sampling (SBS). SBS initializes uniformly a number of particles representing candidate solutions, then uses the Stein Variational Gradient Descent (SVGD) algorithm to sequentially and deterministically move those particles in order to approximate a target distribution whose mass is concentrated around promising areas of the domain of the optimized function. The target is chosen to be a properly parametrized Boltzmann distribution. For the purpose of global optimization, we adapt the generic SVGD theoretical framework allowing to address more general target distributions over a compact subset of $\mathbb{R}^d$, and we prove SBS's asymptotic convergence. In addition to the main SBS algorithm, we present two variants: the SBS-PF that includes a particle filtering strategy, and the SBS-HYBRID one that uses SBS or SBS-PF as a continuation after other particle- or distribution-based optimization methods. A detailed comparison with state-of-the-art methods on benchmark functions demonstrates that SBS and its variants are highly competitive, while the combination of the two variants provides the best trade-off between accuracy and computational cost.

In this study, we propose a multi branched network approach to predict the dynamics of a physics attractor characterized by intricate and chaotic behavior. We introduce a unique neural network architecture comprised of Radial Basis Function (RBF) layers combined with an attention mechanism designed to effectively capture nonlinear inter-dependencies inherent in the attractor's temporal evolution. Our results demonstrate successful prediction of the attractor's trajectory across 100 predictions made using a real-world dataset of 36,700 time-series observations encompassing approximately 28 minutes of activity. To further illustrate the performance of our proposed technique, we provide comprehensive visualizations depicting the attractor's original and predicted behaviors alongside quantitative measures comparing observed versus estimated outcomes. Overall, this work showcases the potential of advanced machine learning algorithms in elucidating hidden structures in complex physical systems while offering practical applications in various domains requiring accurate short-term forecasting capabilities.

Capsule networks (CapsNets) were introduced to address convolutional neural networks limitations, learning object-centric representations that are more robust, pose-aware, and interpretable. They organize neurons into groups called capsules, where each capsule encodes the instantiation parameters of an object or one of its parts. Moreover, a routing algorithm connects capsules in different layers, thereby capturing hierarchical part-whole relationships in the data. This thesis investigates the intriguing aspects of CapsNets and focuses on three key questions to unlock their full potential. First, we explore the effectiveness of the routing algorithm, particularly in small-sized networks. We propose a novel method that anneals the number of routing iterations during training, enhancing performance in architectures with fewer parameters. Secondly, we investigate methods to extract more effective first-layer capsules, also known as primary capsules. By exploiting pruned backbones, we aim to improve computational efficiency by reducing the number of capsules while achieving high generalization. This approach reduces CapsNets memory requirements and computational effort. Third, we explore part-relationship learning in CapsNets. Through extensive research, we demonstrate that capsules with low entropy can extract more concise and discriminative part-whole relationships compared to traditional capsule networks, even with reasonable network sizes. Lastly, we showcase how CapsNets can be utilized in real-world applications, including autonomous localization of unmanned aerial vehicles, quaternion-based rotations prediction in synthetic datasets, and lung nodule segmentation in biomedical imaging. The findings presented in this thesis contribute to a deeper understanding of CapsNets and highlight their potential to address complex computer vision challenges.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司