亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Byzantine machine learning (ML) aims to ensure the resilience of distributed learning algorithms to misbehaving (or Byzantine) machines. Although this problem received significant attention, prior works often assume the data held by the machines to be homogeneous, which is seldom true in practical settings. Data heterogeneity makes Byzantine ML considerably more challenging, since a Byzantine machine can hardly be distinguished from a non-Byzantine outlier. A few solutions have been proposed to tackle this issue, but these provide suboptimal probabilistic guarantees and fare poorly in practice. This paper closes the theoretical gap, achieving optimality and inducing good empirical results. In fact, we show how to automatically adapt existing solutions for (homogeneous) Byzantine ML to the heterogeneous setting through a powerful mechanism, we call nearest neighbor mixing (NNM), which boosts any standard robust distributed gradient descent variant to yield optimal Byzantine resilience under heterogeneity. We obtain similar guarantees (in expectation) by plugging NNM in the distributed stochastic heavy ball method, a practical substitute to distributed gradient descent. We obtain empirical results that significantly outperform state-of-the-art Byzantine ML solutions.

相關內容

The asymptotic mean squared test error and sensitivity of the Random Features Regression model (RFR) have been recently studied. We build on this work and identify in closed-form the family of Activation Functions (AFs) that minimize a combination of the test error and sensitivity of the RFR under different notions of functional parsimony. We find scenarios under which the optimal AFs are linear, saturated linear functions, or expressible in terms of Hermite polynomials. Finally, we show how using optimal AFs impacts well-established properties of the RFR model, such as its double descent curve, and the dependency of its optimal regularization parameter on the observation noise level.

With the advent of large datasets, offline reinforcement learning (RL) is a promising framework for learning good decision-making policies without the need to interact with the real environment. However, offline RL requires the dataset to be reward-annotated, which presents practical challenges when reward engineering is difficult or when obtaining reward annotations is labor-intensive. In this paper, we introduce Optimal Transport Reward labeling (OTR), an algorithm that assigns rewards to offline trajectories, with a few high-quality demonstrations. OTR's key idea is to use optimal transport to compute an optimal alignment between an unlabeled trajectory in the dataset and an expert demonstration to obtain a similarity measure that can be interpreted as a reward, which can then be used by an offline RL algorithm to learn the policy. OTR is easy to implement and computationally efficient. On D4RL benchmarks, we show that OTR with a single demonstration can consistently match the performance of offline RL with ground-truth rewards.

The predicted increase in demand for data-intensive solution development is driving the need for software, data, and domain experts to effectively collaborate in multi-disciplinary data-intensive software teams (MDSTs). We conducted a socio-technical grounded theory study through interviews with 24 practitioners in MDSTs to better understand the challenges these teams face when delivering data-intensive software solutions. The interviews provided perspectives across different types of roles including domain, data and software experts, and covered different organisational levels from team members, team managers to executive leaders. We found that the key concern for these teams is dealing with data-related challenges. In this paper, we present the theory of dealing with data challenges that explains the challenges faced by MDSTs including gaining access to data, aligning data, understanding data, and resolving data quality issues; the context in and condition under which these challenges occur, the causes that lead to the challenges, and the related consequences such as having to conduct remediation activities, inability to achieve expected outcomes and lack of trust in the delivered solutions. We also identified contingencies or strategies applied to address the challenges including high-level strategic approaches such as implementing data governance, implementing new tools and techniques such as data quality visualisation and monitoring tools, as well as building stronger teams by focusing on people dynamics, communication skill development and cross-skilling. Our findings have direct implications for practitioners and researchers to better understand the landscape of data challenges and how to deal with them.

With the increasing ubiquity of cameras and smart sensors, humanity is generating data at an exponential rate. Access to this trove of information, often covering yet-underrepresented use-cases (e.g., AI in medical settings) could fuel a new generation of deep-learning tools. However, eager data scientists should first provide satisfying guarantees w.r.t. the privacy of individuals present in these untapped datasets. This is especially important for images or videos depicting faces, as their biometric information is the target of most identification methods. While a variety of solutions have been proposed to de-identify such images, they often corrupt other non-identifying facial attributes that would be relevant for downstream tasks. In this paper, we propose Disguise, a novel algorithm to seamlessly de-identify facial images while ensuring the usability of the altered data. Unlike prior arts, we ground our solution in both differential privacy and ensemble-learning research domains. Our method extracts and swaps depicted identities with fake ones, synthesized via variational mechanisms to maximize obfuscation and non-invertibility; while leveraging the supervision from a mixture-of-experts to disentangle and preserve other utility attributes. We extensively evaluate our method on multiple datasets, demonstrating higher de-identification rate and superior consistency than prior art w.r.t. various downstream tasks.

We consider gradient coding in the presence of an adversary, controlling so-called malicious workers trying to corrupt the computations. Previous works propose the use of MDS codes to treat the inputs of the malicious workers as errors and correct them using the error-correction properties of the code. This comes at the expense of increasing the replication, i.e., the number of workers each partial gradient is computed by. In this work, we reduce replication by proposing a method that detects the erroneous inputs from the malicious workers, hence transforming them into erasures. For $s$ malicious workers, our solution can reduce the replication to $s+1$ instead of $2s+1$ for each partial gradient at the expense of only $s$ additional computations at the main node and additional rounds of light communication between the main node and the workers. We give fundamental limits of the general framework for fractional repetition data allocation. Our scheme is optimal in terms of replication and local computation but incurs a communication cost that is asymptotically, in the size of the dataset, a multiplicative factor away from the derived bound.

We present a solution to consensus on a torus with Byzantine faults. Any solution to classic consensus that is tolerant to $f$ Byzantine faults requires $2f+1$ node-disjoint paths. Due to limited torus connectivity, this bound necessitates spatial separation between faults. Our solution does not require this many disjoint paths and tolerates dense faults. Specifically, we consider the case where all faults are in the one column. We address the version of consensus where only processes in fault-free columns must agree. We prove that even this weaker version is not solvable if the column may be completely faulty. We then present a solution for the case where at least one row is fault-free. The correct processes share orientation but do not know the identities of other processes or the torus dimensions. The communication is synchronous. To achieve our solution, we build and prove correct an all-to-all broadcast algorithm \PROG{BAT} that guarantees delivery to all processes in fault-free columns. We use this algorithm to solve our weak consensus problem. Our solution, \PROG{CBAT}, runs in $O(H+W)$ rounds, where $H$ and $W$ are torus height and width respectively. We extend our consensus solution to the fixed message size model where it runs in $O(H^3W^2)$ rounds. Our results are immediately applicable if the faults are located in a single row, rather than a column.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

北京阿比特科技有限公司