This paper presents a method for reproducing a simple central pattern generator (CPG) using a modified Echo State Network (ESN). Conventionally, the dynamical reservoir needs to be damped to stabilize and preserve memory. However, we find that a reservoir that develops oscillatory activity without any external excitation can mimic the behaviour of a simple CPG in biological systems. We define the specific neuron ensemble required for generating oscillations in the reservoir and demonstrate how adjustments to the leaking rate, spectral radius, topology, and population size can increase the probability of reproducing these oscillations. The results of the experiments, conducted on the time series simulation tasks, demonstrate that the ESN is able to generate the desired waveform without any input. This approach offers a promising solution for the development of bio-inspired controllers for robotic systems.
We present VERF, a collection of two methods (VERF-PnP and VERF-Light) for providing runtime assurance on the correctness of a camera pose estimate of a monocular camera without relying on direct depth measurements. We leverage the ability of NeRF (Neural Radiance Fields) to render novel RGB perspectives of a scene. We only require as input the camera image whose pose is being estimated, an estimate of the camera pose we want to monitor, and a NeRF model containing the scene pictured by the camera. We can then predict if the pose estimate is within a desired distance from the ground truth and justify our prediction with a level of confidence. VERF-Light does this by rendering a viewpoint with NeRF at the estimated pose and estimating its relative offset to the sensor image up to scale. Since scene scale is unknown, the approach renders another auxiliary image and reasons over the consistency of the optical flows across the three images. VERF-PnP takes a different approach by rendering a stereo pair of images with NeRF and utilizing the Perspective-n-Point (PnP) algorithm. We evaluate both methods on the LLFF dataset, on data from a Unitree A1 quadruped robot, and on data collected from Blue Origin's sub-orbital New Shepard rocket to demonstrate the effectiveness of the proposed pose monitoring method across a range of scene scales. We also show monitoring can be completed in under half a second on a 3090 GPU.
The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: the best known decidability results are for LRS with special properties (e.g., low order recurrences). But these problems are easier for "uninitialized" variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided in polynomial time (Tiwari in 2004, Braverman in 2006). In this paper, we consider problems that lie between the initialized and uninitialized variant. More precisely, we ask if 0 (resp. negative numbers) can be avoided from every initial configuration in a neighborhood of a given initial configuration. This can be considered as a robust variant of the Skolem (resp. positivity) problem. We show that these problems lie at the frontier of decidability: if the neighbourhood is given as part of the input, then robust Skolem and robust positivity are Diophantine hard, i.e., solving either would entail major breakthrough in Diophantine approximations, as happens for (non-robust) positivity. However, if one asks whether such a neighbourhood exists, then the problems turn out to be decidable with PSPACE complexity. Our techniques also allow us to tackle robustness for ultimate positivity, which asks whether there is a bound on the number of steps after which the LRS remains positive. There are two variants depending on whether we ask for a "uniform" bound on this number of steps. For the non-uniform variant, when the neighbourhood is open, the problem turns out to be tractable, even when the neighbourhood is given as input.
Visual Inertial Odometry (VIO) is an essential component of modern Augmented Reality (AR) applications. However, VIO only tracks the relative pose of the device, leading to drift over time. Absolute pose estimation methods infer the device's absolute pose, but their accuracy depends on the input quality. This paper introduces VIO-APR, a new framework for markerless mobile AR that combines an absolute pose regressor (APR) with a local VIO tracking system. VIO-APR uses VIO to assess the reliability of the APR and the APR to identify and compensate for VIO drift. This feedback loop results in more accurate positioning and more stable AR experiences. To evaluate VIO-APR, we created a dataset that combines camera images with ARKit's VIO system output for six indoor and outdoor scenes of various scales. Over this dataset, VIO-APR improves the median accuracy of popular APR by up to 36\% in position and 29\% in orientation, increases the percentage of frames in the high ($0.25 m, 2^{\circ}$) accuracy level by up to 112\% and reduces the percentage of frames predicted below the low ($5 m, 10^\circ$) accuracy greatly. We implement VIO-APR into a mobile AR application using Unity to demonstrate its capabilities. VIO-APR results in noticeably more accurate localization and a more stable overall experience.
Patent classification aims to assign multiple International Patent Classification (IPC) codes to a given patent. Recent methods for automatically classifying patents mainly focus on analyzing the text descriptions of patents. However, apart from the texts, each patent is also associated with some assignees, and the knowledge of their applied patents is often valuable for classification. Furthermore, the hierarchical taxonomy formulated by the IPC system provides important contextual information and enables models to leverage the correlations between IPC codes for more accurate classification. However, existing methods fail to incorporate the above aspects. In this paper, we propose an integrated framework that comprehensively considers the information on patents for patent classification. To be specific, we first present an IPC codes correlations learning module to derive their semantic representations via adaptively passing and aggregating messages within the same level and across different levels along the hierarchical taxonomy. Moreover, we design a historical application patterns learning component to incorporate the corresponding assignee's previous patents by a dual channel aggregation mechanism. Finally, we combine the contextual information of patent texts that contains the semantics of IPC codes, and assignees' sequential preferences to make predictions. Experiments on real-world datasets demonstrate the superiority of our approach over the existing methods. Besides, we present the model's ability to capture the temporal patterns of assignees and the semantic dependencies among IPC codes.
We study a generalization of the classic Spanning Tree problem that allows for a non-uniform failure model. More precisely, edges are either \emph{safe} or \emph{unsafe} and we assume that failures only affect unsafe edges. In Unweighted Flexible Graph Connectivity we are given an undirected graph $G = (V,E)$ in which the edge set $E$ is partitioned into a set $S$ of safe edges and a set $U$ of unsafe edges and the task is to find a set $T$ of at most $k$ edges such that $T - \{u\}$ is connected and spans $V$ for any unsafe edge $u \in T$. Unweighted Flexible Graph Connectivity generalizes both Spanning Tree and Hamiltonian Cycle. We study Unweighted Flexible Graph Connectivity in terms of fixed-parameter tractability (FPT). We show an almost complete dichotomy on which parameters lead to fixed-parameter tractability and which lead to hardness. To this end, we obtain FPT-time algorithms with respect to the vertex deletion distance to cluster graphs and with respect to the treewidth. By exploiting the close relationship to Hamiltonian Cycle, we show that FPT-time algorithms for many smaller parameters are unlikely under standard parameterized complexity assumptions. Regarding problem-specific parameters, we observe that Unweighted Flexible Graph Connectivity} admits an FPT-time algorithm when parameterized by the number of unsafe edges. Furthermore, we investigate a below-upper-bound parameter for the number of edges of a solution. We show that this parameter also leads to an FPT-time algorithm.
In this paper, we describe a new algorithm called Preferential Attachment k-class Classifier (PreAttacK) for detecting fake accounts in a social network. Recently, several algorithms have obtained high accuracy on this problem. However, they have done so by relying on information about fake accounts' friendships or the content they share with others--the very things we seek to prevent. PreAttacK represents a significant departure from these approaches. We provide some of the first detailed distributional analyses of how new fake (and real) accounts first attempt to request friends after joining a major network (Facebook). We show that even before a new account has made friends or shared content, these initial friend request behaviors evoke a natural multi-class extension of the canonical Preferential Attachment model of social network growth. We use this model to derive a new algorithm, PreAttacK. We prove that in relevant problem instances, PreAttacK near-optimally approximates the posterior probability that a new account is fake under this multi-class Preferential Attachment model of new accounts' (not-yet-answered) friend requests. These are the first provable guarantees for fake account detection that apply to new users, and that do not require strong homophily assumptions. This principled approach also makes PreAttacK the only algorithm with provable guarantees that obtains state-of-the-art performance on new users on the global Facebook network, where it converges to AUC=0.9 after new users send + receive a total of just 20 not-yet-answered friend requests. For comparison, state-of-the-art benchmarks do not obtain this AUC even after observing additional data on new users' first 100 friend requests. Thus, unlike mainstream algorithms, PreAttacK converges before the median new fake account has made a single friendship (accepted friend request) with a human.
This paper presents CG-Eval, the first comprehensive evaluation of the generation capabilities of large Chinese language models across a wide range of academic disciplines. The models' performance was assessed based on their ability to generate accurate and relevant responses to different types of questions in six disciplines, namely, Science and Engineering, Humanities and Social Sciences, Mathematical Calculations, Medical Practitioner Qualification Examination, Judicial Examination, and Certified Public Accountant Examination. This paper also presents Gscore, a composite index derived from the weighted sum of multiple metrics to measure the quality of model's generation against a reference. The test data and test results can be found at //cgeval.besteasy.com/.
Mutually orthogonal complementary sets (MOCSs) and Z-complementary code sets (ZCCSs) have many applications in practical scenarios such as synthetic aperture imaging systems and multi-carrier code division multiple access (MC-CDMA) systems. With the aid of extended Boolean functions (EBFs), in this paper, we first propose a direct construction of MOCSs with flexible lengths, and then propose a new construction of ZCCSs. The proposed MOCSs cover many existing lengths and have non-power-of-two lengths when q = 2. Our presented second construction can generate optimal ZCCSs meeting the set size upper bound. Note that the proposed two constructions are direct without the aid of any special sequence, which is suitable for rapid hardware generation.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.