The aim of image captioning is to generate similar captions by machine as human do to describe image contents. Despite many efforts, generating discriminative captions for images remains non-trivial. Most traditional approaches imitate the language structure patterns, thus tend to fall into a stereotype of replicating frequent phrases or sentences and neglect unique aspects of each image. In this work, we propose an image captioning framework with a self-retrieval module as training guidance, which encourages generating discriminative captions. It brings unique advantages: (1) the self-retrieval guidance can act as a metric and an evaluator of caption discriminativeness to assure the quality of generated captions. (2) The correspondence between generated captions and images are naturally incorporated in the generation process without human annotations, and hence our approach could utilize a large amount of unlabeled images to boost captioning performance with no additional laborious annotations. We demonstrate the effectiveness of the proposed retrieval-guided method on MS-COCO and Flickr30k captioning datasets, and show its superior captioning performance with more discriminative captions.
Text to Image Synthesis refers to the process of automatic generation of a photo-realistic image starting from a given text and is revolutionizing many real-world applications. In order to perform such process it is necessary to exploit datasets containing captioned images, meaning that each image is associated with one (or more) captions describing it. Despite the abundance of uncaptioned images datasets, the number of captioned datasets is limited. To address this issue, in this paper we propose an approach capable of generating images starting from a given text using conditional GANs trained on uncaptioned images dataset. In particular, uncaptioned images are fed to an Image Captioning Module to generate the descriptions. Then, the GAN Module is trained on both the input image and the machine-generated caption. To evaluate the results, the performance of our solution is compared with the results obtained by the unconditional GAN. For the experiments, we chose to use the uncaptioned dataset LSUN bedroom. The results obtained in our study are preliminary but still promising.
Recent studies in image retrieval task have shown that ensembling different models and combining multiple global descriptors lead to performance improvement. However, training different models for ensemble is not only difficult but also inefficient with respect to time or memory. In this paper, we propose a novel framework that exploits multiple global descriptors to get an ensemble-like effect while it can be trained in an end-to-end manner. The proposed framework is flexible and expandable by the global descriptor, CNN backbone, loss, and dataset. Moreover, we investigate the effectiveness of combining multiple global descriptors with quantitative and qualitative analysis. Our extensive experiments show that the combined descriptor outperforms a single global descriptor, as it can utilize different types of feature properties. In the benchmark evaluation, the proposed framework achieves the state-of-the-art performance on the CARS196, CUB200-2011, In-shop Clothes and Stanford Online Products on image retrieval tasks by a large margin compared to competing approaches. Our model implementations and pretrained models are publicly available.
Deep neural networks have achieved great successes on the image captioning task. However, most of the existing models depend heavily on paired image-sentence datasets, which are very expensive to acquire. In this paper, we make the first attempt to train an image captioning model in an unsupervised manner. Instead of relying on manually labeled image-sentence pairs, our proposed model merely requires an image set, a sentence corpus, and an existing visual concept detector. The sentence corpus is used to teach the captioning model how to generate plausible sentences. Meanwhile, the knowledge in the visual concept detector is distilled into the captioning model to guide the model to recognize the visual concepts in an image. In order to further encourage the generated captions to be semantically consistent with the image, the image and caption are projected into a common latent space so that they can be used to reconstruct each other. Given that the existing sentence corpora are mainly designed for linguistic research and thus with little reference to image contents, we crawl a large-scale image description corpus of 2 million natural sentences to facilitate the unsupervised image captioning scenario. Experimental results show that our proposed model is able to produce quite promising results without using any labeled training pairs.
Image descriptors based on activations of Convolutional Neural Networks (CNNs) have become dominant in image retrieval due to their discriminative power, compactness of representation, and search efficiency. Training of CNNs, either from scratch or fine-tuning, requires a large amount of annotated data, where a high quality of annotation is often crucial. In this work, we propose to fine-tune CNNs for image retrieval on a large collection of unordered images in a fully automated manner. Reconstructed 3D models obtained by the state-of-the-art retrieval and structure-from-motion methods guide the selection of the training data. We show that both hard-positive and hard-negative examples, selected by exploiting the geometry and the camera positions available from the 3D models, enhance the performance of particular-object retrieval. CNN descriptor whitening discriminatively learned from the same training data outperforms commonly used PCA whitening. We propose a novel trainable Generalized-Mean (GeM) pooling layer that generalizes max and average pooling and show that it boosts retrieval performance. Applying the proposed method to the VGG network achieves state-of-the-art performance on the standard benchmarks: Oxford Buildings, Paris, and Holidays datasets.
Answering visual questions need acquire daily common knowledge and model the semantic connection among different parts in images, which is too difficult for VQA systems to learn from images with the only supervision from answers. Meanwhile, image captioning systems with beam search strategy tend to generate similar captions and fail to diversely describe images. To address the aforementioned issues, we present a system to have these two tasks compensate with each other, which is capable of jointly producing image captions and answering visual questions. In particular, we utilize question and image features to generate question-related captions and use the generated captions as additional features to provide new knowledge to the VQA system. For image captioning, our system attains more informative results in term of the relative improvements on VQA tasks as well as competitive results using automated metrics. Applying our system to the VQA tasks, our results on VQA v2 dataset achieve 65.8% using generated captions and 69.1% using annotated captions in validation set and 68.4% in the test-standard set. Further, an ensemble of 10 models results in 69.7% in the test-standard split.
This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.
One property that remains lacking in image captions generated by contemporary methods is discriminability: being able to tell two images apart given the caption for one of them. We propose a way to improve this aspect of caption generation. By incorporating into the captioning training objective a loss component directly related to ability (by a machine) to disambiguate image/caption matches, we obtain systems that produce much more discriminative caption, according to human evaluation. Remarkably, our approach leads to improvement in other aspects of generated captions, reflected by a battery of standard scores such as BLEU, SPICE etc. Our approach is modular and can be applied to a variety of model/loss combinations commonly proposed for image captioning.
Automatic image captioning has recently approached human-level performance due to the latest advances in computer vision and natural language understanding. However, most of the current models can only generate plain factual descriptions about the content of a given image. However, for human beings, image caption writing is quite flexible and diverse, where additional language dimensions, such as emotion, humor and language styles, are often incorporated to produce diverse, emotional, or appealing captions. In particular, we are interested in generating sentiment-conveying image descriptions, which has received little attention. The main challenge is how to effectively inject sentiments into the generated captions without altering the semantic matching between the visual content and the generated descriptions. In this work, we propose two different models, which employ different schemes for injecting sentiments into image captions. Compared with the few existing approaches, the proposed models are much simpler and yet more effective. The experimental results show that our model outperform the state-of-the-art models in generating sentimental (i.e., sentiment-bearing) image captions. In addition, we can also easily manipulate the model by assigning different sentiments to the testing image to generate captions with the corresponding sentiments.
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at //github.com/2051/RSICD_optimal
Image captioning has so far been explored mostly in English, as most available datasets are in this language. However, the application of image captioning should not be restricted by language. Only few studies have been conducted for image captioning in a cross-lingual setting. Different from these works that manually build a dataset for a target language, we aim to learn a cross-lingual captioning model fully from machine-translated sentences. To conquer the lack of fluency in the translated sentences, we propose in this paper a fluency-guided learning framework. The framework comprises a module to automatically estimate the fluency of the sentences and another module to utilize the estimated fluency scores to effectively train an image captioning model for the target language. As experiments on two bilingual (English-Chinese) datasets show, our approach improves both fluency and relevance of the generated captions in Chinese, but without using any manually written sentences from the target language.