Flexible grid Optical Networks provide efficient spectrum utilization by employing the mechanisms to provide flexibility in the optical channel (spectrum slot) sizes. One of the research problems in Flexible grid Optical Networks is their survivability against failure. On the other hand, p-Cycles have not found practical use due to the significant compute time required for finding optimal configuration for the size of networks seen in real-life. Therefore, for real-time scenarios, we can write heuristics which can assign protection to the new working paths without disturbing the existing traffic on all the other routes in flexible grid networks. The provisioning of protection to each link or path of the lightpath requests can be done using Dynamic Cycles (D-Cycles) or Dynamic Shared Backup Resource Protection (D-SBRP). However, protecting each link or path can lead to the wastage of the resources in the network.
Platform trials can evaluate the efficacy of several treatments compared to a control. The number of treatments is not fixed, as arms may be added or removed as the trial progresses. Platform trials are more efficient than independent parallel-group trials because of using shared control groups. For arms entering the trial later, not all patients in the control group are randomised concurrently. The control group is then divided into concurrent and non-concurrent controls. Using non-concurrent controls (NCC) can improve the trial's efficiency, but can introduce bias due to time trends. We focus on a platform trial with two treatment arms and a common control arm. Assuming that the second treatment arm is added later, we assess the robustness of model-based approaches to adjust for time trends when using NCC. We consider approaches where time trends are modeled as linear or as a step function, with steps at times where arms enter or leave the trial. For trials with continuous or binary outcomes, we investigate the type 1 error (t1e) rate and power of testing the efficacy of the newly added arm under a range of scenarios. In addition to scenarios where time trends are equal across arms, we investigate settings with trends that are different or not additive in the model scale. A step function model fitted on data from all arms gives increased power while controlling the t1e, as long as the time trends are equal for the different arms and additive on the model scale. This holds even if the trend's shape deviates from a step function if block randomisation is used. But if trends differ between arms or are not additive on the model scale, t1e control may be lost. The efficiency gained by using step function models to incorporate NCC can outweigh potential biases. However, the specifics of the trial, plausibility of different time trends, and robustness of results should be considered
User interaction (UI) logs are high-resolution event logs that record low-level activities performed by a user during the execution of a task in an information system. Each event in a UI log corresponds to a single interaction between the user and the interface, such as clicking a button or entering a string into a text field. UI logs are used for purposes like task mining or robotic process automation (RPA), but each study and tool relies on a different conceptualization and implementation of the elements and attributes that constitute user interactions. This lack of standardization makes it difficult to integrate UI logs from different sources and to combine tools for UI data collection with downstream analytics or automation solutions. To address this, we propose a universally applicable reference data model for process-related UI logs. Based on a review of scientific literature and industry solutions, this model includes the core attributes of UI logs, but remains flexible with regard to the scope, level of abstraction, and case notion. We provide an implementation of the model as an extension to the XES interchange standard for event logs and demonstrate its practical applicability in a real-life RPA scenario.
The \emph{$ p$-processor cup game} is a classic and widely studied scheduling problem that captures the setting in which a $p$-processor machine must assign tasks to processors over time in order to ensure that no individual task ever falls too far behind. The problem is formalized as a multi-round game in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks) compete. The emptier's goal is to minimize backlog, which is the maximum amount of outstanding work for any task. Recently, Kuszmaul and Westover (ITCS, 2021) proposed the \emph{variable-processor cup game}, which considers the same problem, except that the amount of resources available to the players (i.e., the number $p$ of processors) fluctuates between rounds of the game. They showed that this seemingly small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in the fixed $p$-processor game is $\Theta(\log n)$, independent of $p$, the optimal backlog in the variable-processor game is $\Theta(n)$. The latter result was only known to apply to games with \emph{exponentially many} rounds, however, and it has remained an open question what the optimal tradeoff between time and backlog is for shorter games. This paper establishes a tight trade-off curve between time and backlog in the variable-processor cup game. Importantly, we prove that for a game consisting of $t$ rounds, the optimal backlog is $\Theta(n)$ if and only if $t \ge \Omega(n^3)$. Our techniques also allow for us to resolve several other open questions concerning how the variable-processor cup game behaves in beyond-worst-case-analysis settings.
We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the $L_1$-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our $L_1$-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for {\it randomized} algorithms robust to a white-box adversary. In particular, our results show that for all $p\ge 0$, there exists a constant $C_p>1$ such that any $C_p$-approximation algorithm for $F_p$ moment estimation in insertion-only streams with a white-box adversary requires $\Omega(n)$ space for a universe of size $n$. Similarly, there is a constant $C>1$ such that any $C$-approximation algorithm in an insertion-only stream for matrix rank requires $\Omega(n)$ space with a white-box adversary. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. (Abstract shortened to meet arXiv limits.)
Fasteners play a critical role in securing various parts of machinery. Deformations such as dents, cracks, and scratches on the surface of fasteners are caused by material properties and incorrect handling of equipment during production processes. As a result, quality control is required to ensure safe and reliable operations. The existing defect inspection method relies on manual examination, which consumes a significant amount of time, money, and other resources; also, accuracy cannot be guaranteed due to human error. Automatic defect detection systems have proven impactful over the manual inspection technique for defect analysis. However, computational techniques such as convolutional neural networks (CNN) and deep learning-based approaches are evolutionary methods. By carefully selecting the design parameter values, the full potential of CNN can be realised. Using Taguchi-based design of experiments and analysis, an attempt has been made to develop a robust automatic system in this study. The dataset used to train the system has been created manually for M14 size nuts having two labeled classes: Defective and Non-defective. There are a total of 264 images in the dataset. The proposed sequential CNN comes up with a 96.3% validation accuracy, 0.277 validation loss at 0.001 learning rate.
Artificial intelligence (AI) has the potential to greatly improve society, but as with any powerful technology, it comes with heightened risks and responsibilities. Current AI research lacks a systematic discussion of how to manage long-tail risks from AI systems, including speculative long-term risks. Keeping in mind the potential benefits of AI, there is some concern that building ever more intelligent and powerful AI systems could eventually result in systems that are more powerful than us; some say this is like playing with fire and speculate that this could create existential risks (x-risks). To add precision and ground these discussions, we provide a guide for how to analyze AI x-risk, which consists of three parts: First, we review how systems can be made safer today, drawing on time-tested concepts from hazard analysis and systems safety that have been designed to steer large processes in safer directions. Next, we discuss strategies for having long-term impacts on the safety of future systems. Finally, we discuss a crucial concept in making AI systems safer by improving the balance between safety and general capabilities. We hope this document and the presented concepts and tools serve as a useful guide for understanding how to analyze AI x-risk.
Model selection in machine learning (ML) is a crucial part of the Bayesian learning procedure. Model choice may impose strong biases on the resulting predictions, which can hinder the performance of methods such as Bayesian neural networks and neural samplers. On the other hand, newly proposed approaches for Bayesian ML exploit features of approximate inference in function space with implicit stochastic processes (a generalization of Gaussian processes). The approach of Sparse Implicit Processes (SIP) is particularly successful in this regard, since it is fully trainable and achieves flexible predictions. Here, we expand on the original experiments to show that SIP is capable of correcting model bias when the data generating mechanism differs strongly from the one implied by the model. We use synthetic datasets to show that SIP is capable of providing predictive distributions that reflect the data better than the exact predictions of the initial, but wrongly assumed model.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs. They are presented here as generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters instead of banks of classical convolutional filters. Otherwise, GNNs operate as CNNs. Filters are composed with pointwise nonlinearities and stacked in layers. It is shown that GNN architectures exhibit equivariance to permutation and stability to graph deformations. These properties provide a measure of explanation respecting the good performance of GNNs that can be observed empirically. It is also shown that if graphs converge to a limit object, a graphon, GNNs converge to a corresponding limit object, a graphon neural network. This convergence justifies the transferability of GNNs across networks with different number of nodes.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.