亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we extend the concept of out/in-branchings spanning the vertices of a digraph (also called directed spanning trees) to temporal graphs, which are digraphs where arcs are available only at prescribed times. While the literature has focused on minimum weight/earliest arrival time Temporal Out-Branchings (TOB), we solve the problem for other optimization criteria. In particular, we define five different types of TOBs based on the optimization of the travel duration (FT-TOB), of the departure time (LD-TOB), of the number of transfers (MT-TOB), of the total waiting time (MW-TOB), and of the travelling time (ST-TOB). For D$\in \{$LD,MT,ST$\}$, we provide necessary and sufficient conditions for the existence of a spanning D-TOB; when it does not exist, we characterize the maximum vertex set that a D-TOB can span. Moreover, we provide a log linear algorithm for computing such branchings. For D$\in \{$FT,MW$\}$, we prove that deciding the existence of a spanning D-TOB is NP-complete; we also show that the same results hold for optimal temporal in-branchings. Finally, we investigate the related problem of computing a spanning temporal subgraph with the minimum number of arcs and optimizing a chosen criterion D. This problem turns out to be NP-hard for any D. The hardness results are quite surprising, as computing optimal paths between nodes can always be done in polynomial time.

相關內容

We introduce a highly efficient method for panoptic segmentation of large 3D point clouds by redefining this task as a scalable graph clustering problem. This approach can be trained using only local auxiliary tasks, thereby eliminating the resource-intensive instance-matching step during training. Moreover, our formulation can easily be adapted to the superpoint paradigm, further increasing its efficiency. This allows our model to process scenes with millions of points and thousands of objects in a single inference. Our method, called SuperCluster, achieves a new state-of-the-art panoptic segmentation performance for two indoor scanning datasets: $50.1$ PQ ($+7.8$) for S3DIS Area~5, and $58.7$ PQ ($+25.2$) for ScanNetV2. We also set the first state-of-the-art for two large-scale mobile mapping benchmarks: KITTI-360 and DALES. With only $209$k parameters, our model is over $30$ times smaller than the best-competing method and trains up to $15$ times faster. Our code and pretrained models are available at //github.com/drprojects/superpoint_transformer.

In millimeter-wave communications, large-scale antenna arrays are commonly employed to mitigate obstacle occlusion and path loss. However, these large-scale arrays generate pencil-shaped beams, which necessitate a higher number of training beams to cover the desired space. This results in the heavy beam training overhead. Furthermore, as the antenna aperture increases, users are more likely to be situated in the near-field region of the base station (BS) antenna array. This motivates our investigation into the beam training problem in the near-field region to achieve efficient beam alignment. To address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first design a set of sparse bases based on the polar domain sparsity of the near-field channel and construct a near-field single-beam training codebook. Then, the hash functions are chosen to construct the near-field multi-arm beam training codebook. Each multi-arm beam training codeword is used in a time slot until the predefined codebook is traversed. Finally, the soft decision and voting methods are applied to distinguish the signal from different BS and obtain the correctly aligned beams. In addition, we provide the logically rigorous proof of computational complexity. Simulation results show that our proposed near-field HMB training method can achieve 96.4% identification accuracy of the exhaustive beam training method and greatly reduce the training overhead to the logarithmic level. Furthermore, we verify its applicability under the far-field scenario as well.

The biological functions of proteins often depend on dynamic structural ensembles. In this work, we develop a flow-based generative modeling approach for learning and sampling the conformational landscapes of proteins. We repurpose highly accurate single-state predictors such as AlphaFold and ESMFold and fine-tune them under a custom flow matching framework to obtain sequence-conditoned generative models of protein structure called AlphaFlow and ESMFlow. When trained and evaluated on the PDB, our method provides a superior combination of precision and diversity compared to AlphaFold with MSA subsampling. When further trained on ensembles from all-atom MD, our method accurately captures conformational flexibility, positional distributions, and higher-order ensemble observables for unseen proteins. Moreover, our method can diversify a static PDB structure with faster wall-clock convergence to certain equilibrium properties than replicate MD trajectories, demonstrating its potential as a proxy for expensive physics-based simulations. Code is available at //github.com/bjing2016/alphaflow.

In the light of recent advances in embodied data visualizations, we aim to shed light on agency in the context of data visualization. To do so, we introduce Data Agency and Data-Agent Interplay as potential terms and research focus. Furthermore, we exemplify the former in the context of human-robot interaction, and identify future challenges and research questions.

Large Language Models (LLMs) hold the potential to perform a variety of text processing tasks and provide textual explanations for proposed actions or decisions. In the era of hybrid work, LLMs can provide intelligent decision support for workers who are designing their hybrid work plans. In particular, they can offer suggestions and explanations to workers balancing numerous decision factors, thereby enhancing their work experience. In this paper, we present a decision support model for workspaces in hybrid work environments, leveraging the reasoning skill of LLMs. We first examine LLM's capability of making suitable workspace suggestions. We find that its reasoning extends beyond the guidelines in the prompt and the LLM can manage the trade-off among the available resources in the workspaces. We conduct an extensive user study to understand workers' decision process for workspace choices and evaluate the effectiveness of the system. We observe that a worker's decision could be influenced by the LLM's suggestions and explanations. The participants in our study find the system to be convenient, regardless of whether reasons are provided or not. Our results show that employees can benefit from the LLM-empowered system for their workspace selection in hybrid workplace.

Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks, such as chain-of-thought reasoning. However, most of the existing approaches to enhance this ability rely heavily on data-driven methods, while neglecting the structural aspects of the model's reasoning capacity. We find that while LLMs can manage individual reasoning steps well, they struggle with maintaining consistency across an entire reasoning chain. To solve this, we introduce planning tokens at the start of each reasoning step, serving as a guide for the model, and add their embeddings to the model parameters. Our approach requires a negligible increase in trainable parameters (just 0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme. We demonstrate our method's effectiveness by applying it to three different LLMs, showing notable accuracy improvements across three math word problem datasets w.r.t. standard fine-tuning baselines.

We give an example of a class of distributions that is learnable in total variation distance with a finite number of samples, but not learnable under $(\varepsilon, \delta)$-differential privacy. This refutes a conjecture of Ashtiani.

This work establishes new convergence guarantees for gradient descent in smooth convex optimization via a computer-assisted analysis technique. Our theory allows nonconstant stepsize policies with frequent long steps potentially violating descent by analyzing the overall effect of many iterations at once rather than the typical one-iteration inductions used in most first-order method analyses. We show that long steps, which may increase the objective value in the short term, lead to provably faster convergence in the long term. A conjecture towards proving a faster $O(1/T\log T)$ rate for gradient descent is also motivated along with simple numerical validation.

Modeling the correlations among errors is closely associated with how accurately the model can quantify predictive uncertainty in probabilistic time series forecasting. Recent multivariate models have made significant progress in accounting for contemporaneous correlations among errors, while a common assumption on these errors is that they are temporally independent for the sake of statistical simplicity. However, real-world observations often deviate from this assumption, since errors usually exhibit substantial autocorrelation due to various factors such as the exclusion of temporally correlated covariates. In this work, we propose an efficient method, based on a low-rank-plus-diagonal parameterization of the covariance matrix, which can effectively characterize the autocorrelation of errors. The proposed method possesses several desirable properties: the complexity does not scale with the number of time series, the resulting covariance can be used for calibrating predictions, and it can seamlessly integrate with any model with Gaussian-distributed errors. We empirically demonstrate these properties using two distinct neural forecasting models -- GPVar and Transformer. Our experimental results confirm the effectiveness of our method in enhancing predictive accuracy and the quality of uncertainty quantification on multiple real-world datasets.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司