亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Web applications and APIs face constant threats from malicious actors seeking to exploit vulnerabilities for illicit gains. These threats necessitate robust anomaly detection systems capable of identifying malicious API traffic efficiently despite limited and diverse datasets. This paper proposes a novel few-shot detection approach motivated by Natural Language Processing (NLP) and advanced Generative Adversarial Network (GAN)-inspired techniques. Leveraging state-of-the-art Transformer architectures, particularly RoBERTa, our method enhances the contextual understanding of API requests, leading to improved anomaly detection compared to traditional methods. We showcase the technique's versatility by demonstrating its effectiveness with both Out-of-Distribution (OOD) and Transformer-based binary classification methods on two distinct datasets: CSIC 2010 and ATRDF 2023. Our evaluations reveal consistently enhanced or, at worst, equivalent detection rates across various metrics in most vectors, highlighting the promise of our approach for improving API security.

相關內容

 應用程序接口(簡稱 API),又稱為應用編程接口,就是軟件系統不同組成部分銜接的約定。

Contrastive Vision-Language Pre-training(CLIP) demonstrates impressive zero-shot capability. The key to improve the adaptation of CLIP to downstream task with few exemplars lies in how to effectively model and transfer the useful knowledge embedded in CLIP. Previous work mines the knowledge typically based on the limited visual samples and close-set semantics (i.e., within target category set of downstream task). However, the aligned CLIP image/text encoders contain abundant relationships between visual features and almost infinite open semantics, which may benefit the few-shot learning but remains unexplored. In this paper, we propose to mine open semantics as anchors to perform a relation transition from image-anchor relationship to image-target relationship to make predictions. Specifically, we adopt a transformer module which takes the visual feature as "Query", the text features of the anchors as "Key" and the similarity matrix between the text features of anchor and target classes as "Value". In this way, the output of such a transformer module represents the relationship between the image and target categories, i.e., the classification predictions. To avoid manually selecting the open semantics, we make the [CLASS] token of input text embedding learnable. We conduct extensive experiments on eleven representative classification datasets. The results show that our method performs favorably against previous state-of-the-arts considering few-shot classification settings.

We present substantial evidence demonstrating the benefits of integrating Large Language Models (LLMs) with a Contextual Multi-Armed Bandit framework. Contextual bandits have been widely used in recommendation systems to generate personalized suggestions based on user-specific contexts. We show that LLMs, pre-trained on extensive corpora rich in human knowledge and preferences, can simulate human behaviours well enough to jump-start contextual multi-armed bandits to reduce online learning regret. We propose an initialization algorithm for contextual bandits by prompting LLMs to produce a pre-training dataset of approximate human preferences for the bandit. This significantly reduces online learning regret and data-gathering costs for training such models. Our approach is validated empirically through two sets of experiments with different bandit setups: one which utilizes LLMs to serve as an oracle and a real-world experiment utilizing data from a conjoint survey experiment.

The rapid development of multimodal large language models (MLLMs), such as GPT-4V, has led to significant advancements. However, these models still face challenges in medical multimodal capabilities due to limitations in the quantity and quality of medical vision-text data, stemming from data privacy concerns and high annotation costs. While pioneering approaches utilize PubMed's large-scale, de-identified medical image-text pairs to address these limitations, they still fall short due to inherent data noise. To tackle this, we refined medical image-text pairs from PubMed and employed MLLMs (GPT-4V) in an 'unblinded' capacity to denoise and reformat the data, resulting in the creation of the PubMedVision dataset with 1.3 million medical VQA samples. Our validation demonstrates that: (1) PubMedVision can significantly enhance the medical multimodal capabilities of current MLLMs, showing significant improvement in benchmarks including the MMMU Health & Medicine track; (2) manual checks by medical experts and empirical results validate the superior data quality of our dataset compared to other data construction methods. Using PubMedVision, we train a 34B medical MLLM HuatuoGPT-Vision, which shows superior performance in medical multimodal scenarios among open-source MLLMs.

Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 $\approx 0.8$ for scenarios with prominent gradients in search space, using only $\sim20\%$ of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at //aka.ms/autorag.

Causal reasoning is fundamental to human intelligence and crucial for effective decision-making in real-world environments. Despite recent advancements in large vision-language models (LVLMs), their ability to comprehend causality remains unclear. Previous work typically focuses on commonsense causality between events and/or actions, which is insufficient for applications like embodied agents and lacks the explicitly defined causal graphs required for formal causal reasoning. To overcome these limitations, we introduce a fine-grained and unified definition of causality involving interactions between humans and/or objects. Building on the definition, we construct a novel dataset, CELLO, consisting of 14,094 causal questions across all four levels of causality: discovery, association, intervention, and counterfactual. This dataset surpasses traditional commonsense causality by including explicit causal graphs that detail the interactions between humans and objects. Extensive experiments on CELLO reveal that current LVLMs still struggle with causal reasoning tasks, but they can benefit significantly from our proposed CELLO-CoT, a causally inspired chain-of-thought prompting strategy. Both quantitative and qualitative analyses from this study provide valuable insights for future research. Our project page is at //github.com/OpenCausaLab/CELLO.

In the realm of automatic speech recognition (ASR), robustness in noisy environments remains a significant challenge. Recent ASR models, such as Whisper, have shown promise, but their efficacy in noisy conditions can be further enhanced. This study is focused on recovering from packet loss to improve the word error rate (WER) of ASR models. We propose using a front-end adaptation network connected to a frozen ASR model. The adaptation network is trained to modify the corrupted input spectrum by minimizing the criteria of the ASR model in addition to an enhancement loss function. Our experiments demonstrate that the adaptation network, trained on Whisper's criteria, notably reduces word error rates across domains and languages in packet-loss scenarios. This improvement is achieved with minimal affect to Whisper model's foundational performance, underscoring our method's practicality and potential in enhancing ASR models in challenging acoustic environments.

Large Language Models (LLMs) have assisted humans in several writing tasks, including text revision and story generation. However, their effectiveness in supporting domain-specific writing, particularly in business contexts, is relatively less explored. Our formative study with industry professionals revealed the limitations in current LLMs' understanding of the nuances in such domain-specific writing. To address this gap, we propose an approach of human-AI collaborative taxonomy development to perform as a guideline for domain-specific writing assistants. This method integrates iterative feedback from domain experts and multiple interactions between these experts and LLMs to refine the taxonomy. Through larger-scale experiments, we aim to validate this methodology and thus improve LLM-powered writing assistance, tailoring it to meet the unique requirements of different stakeholder needs.

As the adoption of explainable AI (XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorisation of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings. Interested readers are encouraged to access our repository at //github.com/tamlhp/awesome-privex.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司