亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simulating tactile perception could potentially leverage the learning capabilities of robotic systems in manipulation tasks. However, the reality gap of simulators for high-resolution tactile sensors remains large. Models trained on simulated data often fail in zero-shot inference and require fine-tuning with real data. In addition, work on high-resolution sensors commonly focus on ones with flat surfaces while 3D round sensors are essential for dexterous manipulation. In this paper, we propose a bi-directional Generative Adversarial Network (GAN) termed SightGAN. SightGAN relies on the early CycleGAN while including two additional loss components aimed to accurately reconstruct background and contact patterns including small contact traces. The proposed SightGAN learns real-to-sim and sim-to-real processes over difference images. It is shown to generate real-like synthetic images while maintaining accurate contact positioning. The generated images can be used to train zero-shot models for newly fabricated sensors. Consequently, the resulted sim-to-real generator could be built on top of the tactile simulator to provide a real-world framework. Potentially, the framework can be used to train, for instance, reinforcement learning policies of manipulation tasks. The proposed model is verified in extensive experiments with test data collected from real sensors and also shown to maintain embedded force information within the tactile images.

相關內容

 傳感器(英文名稱:transducer/sensor)是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

The control of large-scale, multi-agent systems often entails distributing decision-making across the system components. However, with advances in communication and computation technologies, we can consider new collaborative decision-making paradigms that exist somewhere between centralized and distributed control. In this work, we seek to understand the benefits and costs of increased collaborative communication in multi-agent systems. We specifically study this in the context of common interest games in which groups of up to k agents can coordinate their actions in maximizing the common objective function. The equilibria that emerge in these systems are the k-strong Nash equilibria of the common interest game; studying the properties of these states can provide relevant insights into the efficacy of inter-agent collaboration. Our contributions come threefold: 1) provide bounds on how well k-strong Nash equilibria approximate the optimal system welfare, formalized by the k-strong price of anarchy, 2) study the run-time and transient performance of collaborative agent-based dynamics, and 3) consider the task of redesigning objectives for groups of agents which improve system performance. We study these three facets generally as well as in the context of resource allocation problems, in which we provide tractable linear programs that give tight bounds on the k-strong price of anarchy.

We tackle the problems of latent variables identification and ``out-of-support'' image generation in representation learning. We show that both are possible for a class of decoders that we call additive, which are reminiscent of decoders used for object-centric representation learning (OCRL) and well suited for images that can be decomposed as a sum of object-specific images. We provide conditions under which exactly solving the reconstruction problem using an additive decoder is guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible transformations. This guarantee relies only on very weak assumptions about the distribution of the latent factors, which might present statistical dependencies and have an almost arbitrarily shaped support. Our result provides a new setting where nonlinear independent component analysis (ICA) is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically that additive decoders can generate novel images by recombining observed factors of variations in novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that additivity is crucial for both identifiability and extrapolation on simulated data.

One of the central questions in the theory of deep learning is to understand how neural networks learn hierarchical features. The ability of deep networks to extract salient features is crucial to both their outstanding generalization ability and the modern deep learning paradigm of pretraining and finetuneing. However, this feature learning process remains poorly understood from a theoretical perspective, with existing analyses largely restricted to two-layer networks. In this work we show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks. We analyze the features learned by a three-layer network trained with layer-wise gradient descent, and present a general purpose theorem which upper bounds the sample complexity and width needed to achieve low test error when the target has specific hierarchical structure. We instantiate our framework in specific statistical learning settings -- single-index models and functions of quadratic features -- and show that in the latter setting three-layer networks obtain a sample complexity improvement over all existing guarantees for two-layer networks. Crucially, this sample complexity improvement relies on the ability of three-layer networks to efficiently learn nonlinear features. We then establish a concrete optimization-based depth separation by constructing a function which is efficiently learnable via gradient descent on a three-layer network, yet cannot be learned efficiently by a two-layer network. Our work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.

With the advent of large-scale pre-trained models, interest in adapting and exploiting them for continual learning scenarios has grown. In this paper, we propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation instead of only using zero-shot learning of new tasks. We augment a pre-trained CLIP model with additional layers after the Image Encoder or before the Text Encoder. We investigate three different strategies: a Linear Adapter, a Self-attention Adapter, each operating on the image embedding, and Prompt Tuning which instead modifies prompts input to the CLIP text encoder. We also propose a method for parameter retention in the adapter layers that uses a measure of parameter importance to better maintain stability and plasticity during incremental learning. Our experiments demonstrate that the simplest solution -- a single Linear Adapter layer with parameter retention -- produces the best results. Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.

Thorax disease analysis in large-scale, multi-centre, and multi-scanner settings is often limited by strict privacy policies. Federated learning (FL) offers a potential solution, while traditional parameter-based FL can be limited by issues such as high communication costs, data leakage, and heterogeneity. Distillation-based FL can improve efficiency, but it relies on a proxy dataset, which is often impractical in clinical practice. To address these challenges, we introduce a data-free distillation-based FL approach FedKDF. In FedKDF, the server employs a lightweight generator to aggregate knowledge from different clients without requiring access to their private data or a proxy dataset. FedKDF combines the predictors from clients into a single, unified predictor, which is further optimized using the learned knowledge in the lightweight generator. Our empirical experiments demonstrate that FedKDF offers a robust solution for efficient, privacy-preserving federated thorax disease analysis.

Creating believable motions for various characters has long been a goal in computer graphics. Current learning-based motion synthesis methods depend on extensive motion datasets, which are often challenging, if not impossible, to obtain. On the other hand, pose data is more accessible, since static posed characters are easier to create and can even be extracted from images using recent advancements in computer vision. In this paper, we utilize this alternative data source and introduce a neural motion synthesis approach through retargeting. Our method generates plausible motions for characters that have only pose data by transferring motion from an existing motion capture dataset of another character, which can have drastically different skeletons. Our experiments show that our method effectively combines the motion features of the source character with the pose features of the target character, and performs robustly with small or noisy pose data sets, ranging from a few artist-created poses to noisy poses estimated directly from images. Additionally, a conducted user study indicated that a majority of participants found our retargeted motion to be more enjoyable to watch, more lifelike in appearance, and exhibiting fewer artifacts. Project page: //cyanzhao42.github.io/pose2motion

With continuous advances in deep learning, distributed training is becoming common in GPU clusters. Specifically, for emerging workloads with diverse amounts, ratios, and patterns of communication, we observe that network contention can significantly degrade training throughput. However, widely used scheduling policies often face limitations as they are agnostic to network contention between jobs. In this paper, we present a new approach to mitigate network contention in GPU clusters using reinforcement learning. We formulate GPU cluster scheduling as a reinforcement learning problem and opt to learn a network contention-aware scheduling policy that efficiently captures contention sensitivities and dynamically adapts scheduling decisions through continuous evaluation and improvement. We show that compared to widely used scheduling policies, our approach reduces average job completion time by up to 18.2\% and effectively cuts the tail job completion time by up to 20.7\% while allowing a preferable trade-off between average job completion time and resource utilization.

Learning causal structures from interventional data is a fundamental problem with broad applications across various fields. While many previous works have focused on recovering the entire causal graph, in practice, there are scenarios where learning only part of the causal graph suffices. This is called $targeted$ causal discovery. In our work, we focus on two such well-motivated problems: subset search and causal matching. We aim to minimize the number of interventions in both cases. Towards this, we introduce the $Meek~separator$, which is a subset of vertices that, when intervened, decomposes the remaining unoriented edges into smaller connected components. We then present an efficient algorithm to find Meek separators that are of small sizes. Such a procedure is helpful in designing various divide-and-conquer-based approaches. In particular, we propose two randomized algorithms that achieve logarithmic approximation for subset search and causal matching, respectively. Our results provide the first known average-case provable guarantees for both problems. We believe that this opens up possibilities to design near-optimal methods for many other targeted causal structure learning problems arising from various applications.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

北京阿比特科技有限公司