亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this letter, we study the channel estimation for wireless communications with movable antenna (MA), which requires to reconstruct the channel response at any location in a given region where the transmitter/receiver is located based on the channel measurements taken at finite locations therein, so as to find the MA's location for optimizing the communication performance. To reduce the pilot overhead and computational complexity for channel estimation, we propose a new successive transmitter-receiver compressed sensing (STRCS) method by exploiting the efficient representation of the channel responses in the given transmitter/receiver region (field) in terms of multi-path components. Specifically, the field-response information (FRI) in the angular domain, including the angles of departure (AoDs)/angles of arrival (AoAs) and complex coefficients of all significant multi-path components are sequentially estimated based on a finite number of channel measurements taken at random/selected locations by the MA at the transmitter and/or receiver. Simulation results demonstrate that the proposed channel reconstruction method outperforms the benchmark schemes in terms of both pilot overhead and channel reconstruction accuracy.

相關內容

This paper investigates the system model and the transmit beamforming design for the Cell-Free massive multi-input multi-output (MIMO) integrated sensing and communication (ISAC) system. The impact of the uncertainty of the target locations on the propagation of wireless signals is considered during both uplink and downlink phases, and especially, the main statistics of the MIMO channel estimation error are theoretically derived in the closed-form fashion. A fundamental performance metric, termed communication-sensing (C-S) region, is defined for the considered system via three cases, i.e., the sensing-only case, the communication-only case and the ISAC case. The transmit beamforming design problems for the three cases are respectively carried out through different reformulations, e.g., the Lagrangian dual transform and the quadratic fractional transform, and some combinations of the block coordinate descent method and the successive convex approximation method. Numerical results present a 3-dimensional C-S region with a dynamic number of access points to illustrate the trade-off between communication and radar sensing. The advantage for radar sensing of the Cell-Free massive MIMO system is also studied via a comparison with the traditional cellular system. Finally, the efficacy of the proposed beamforming scheme is validated in comparison with zero-forcing and maximum ratio transmission schemes.

In backscatter communication (BC), a passive tag transmits information by just affecting an external electromagnetic field through load modulation. Thereby, the feed current of the excited tag antenna is modulated by adapting the passive termination load. This paper studies the achievable information rates with a freely adaptable passive load. As a prerequisite, we unify monostatic, bistatic, and ambient BC with circuit-based system modeling. We present the crucial insight that channel capacity is described by existing results on peak-power-limited quadrature Gaussian channels, because the steady-state tag current phasor lies on a disk. Consequently, we derive the channel capacity for the case of an unmodulated external field, for general passive, purely reactive, or purely resistive tag loads. We find that modulating both resistance and reactance is important for very high rates. We discuss the capacity-achieving load statistics, rate asymptotics, technical conclusions, and rate losses from value-range-constrained loads (which are found to be small for moderate constraints). We then demonstrate that near-capacity rates can be attained by more practical schemes: (i) amplitude-and-phase-shift keying on the reflection coefficient and (ii) simple load circuits of a few switched resistors and capacitors. Finally, we draw conclusions for the ambient BC channel capacity in important special cases.

The millimeter wave (mmWave) radar sensing-aided communications in vehicular mobile communication systems is investigated. To alleviate the beam training overhead under high mobility scenarios, a successive pose estimation and beam tracking (SPEBT) scheme is proposed to facilitate mmWave communications with the assistance of mmWave radar sensing. The proposed SPEBT scheme first resorts to a Fast Conservative Filtering for Efficient and Accurate Radar odometry (Fast-CFEAR) approach to estimate the vehicle pose consisting of 2-dimensional position and yaw from radar point clouds collected by mmWave radar sensor. Then, the pose estimation information is fed into an extend Kalman filter to perform beam tracking for the line-of-sight channel. Owing to the intrinsic robustness of mmWave radar sensing, the proposed SPEBT scheme is capable of operating reliably under extreme weather/illumination conditions and large-scale global navigation satellite systems (GNSS)-denied environments. The practical deployment of the SPEBT scheme is verified through rigorous testing on a real-world sensing dataset. Simulation results demonstrate that the proposed SPEBT scheme is capable of providing precise pose estimation information and accurate beam tracking output, while reducing the proportion of beam training overhead to less than 5% averagely.

Detecting changes that occurred in a pair of 3D airborne LiDAR point clouds, acquired at two different times over the same geographical area, is a challenging task because of unmatching spatial supports and acquisition system noise. Most recent attempts to detect changes on point clouds are based on supervised methods, which require large labelled data unavailable in real-world applications. To address these issues, we propose an unsupervised approach that comprises two components: Neural Field (NF) for continuous shape reconstruction and a Gaussian Mixture Model for categorising changes. NF offer a grid-agnostic representation to encode bi-temporal point clouds with unmatched spatial support that can be regularised to increase high-frequency details and reduce noise. The reconstructions at each timestamp are compared at arbitrary spatial scales, leading to a significant increase in detection capabilities. We apply our method to a benchmark dataset of simulated LiDAR point clouds for urban sprawling. The dataset offers different challenging scenarios with different resolutions, input modalities and noise levels, allowing a multi-scenario comparison of our method with the current state-of-the-art. We boast the previous methods on this dataset by a 10% margin in intersection over union metric. In addition, we apply our methods to a real-world scenario to identify illegal excavation (looting) of archaeological sites and confirm that they match findings from field experts.

Future wireless networks and sensing systems will benefit from access to large chunks of spectrum above 100 GHz, to achieve terabit-per-second data rates in 6th Generation (6G) cellular systems and improve accuracy and reach of Earth exploration and sensing and radio astronomy applications. These are extremely sensitive to interference from artificial signals, thus the spectrum above 100~GHz features several bands which are protected from active transmissions under current spectrum regulations. To provide more agile access to the spectrum for both services, active and passive users will have to coexist without harming passive sensing operations. In this paper, we provide the first, fundamental analysis of Radio Frequency Interference (RFI) that large-scale terrestrial deployments introduce in different satellite sensing systems now orbiting the Earth. We develop a geometry-based analysis and extend it into a data-driven model which accounts for realistic propagation, building obstruction, ground reflection, for network topology with up to $10^5$ nodes in more than $85$ km$^2$. We show that the presence of harmful RFI depends on several factors, including network load, density and topology, satellite orientation, and building density. The results and methodology provide the foundation for the development of coexistence solutions and spectrum policy towards 6G.

In this paper, we consider a full-duplex (FD) space shift keying (SSK) communication system, where information exchange between two users is assisted only by a reconfigurable intelligent surface (RIS). In particular, the impact of loop interference (LI) between the transmit and receive antennas as well as residual self-interference (SI) from the RIS is considered. Based on the maximum likelihood detector, we derive the conditional pairwise error probability and the numerical integration expression for the unconditional pairwise error probability (UPEP). Since it is difficult to find a closed-form solution, we perform accurate estimation by the Gauss-Chebyshev quadrature (GCQ) method. To gain more useful insights, we derive an expression for UPEP in the high signal-to-noise ratio region and further give the average bit error probability (ABEP) expression. Monte Carlo simulations were performed to validate the derived results. It is found that SI and LI have severe impacts on system performance. Fortunately, these two disturbances can be well counteracted by increasing the number of RIS units.

Autonomous vehicles and Advanced Driving Assistance Systems (ADAS) have the potential to radically change the way we travel. Many such vehicles currently rely on segmentation and object detection algorithms to detect and track objects around its surrounding. The data collected from the vehicles are often sent to cloud servers to facilitate continual/life-long learning of these algorithms. Considering the bandwidth constraints, the data is compressed before sending it to servers, where it is typically decompressed for training and analysis. In this work, we propose the use of a learning-based compression Codec to reduce the overhead in latency incurred for the decompression operation in the standard pipeline. We demonstrate that the learned compressed representation can also be used to perform tasks like semantic segmentation in addition to decompression to obtain the images. We experimentally validate the proposed pipeline on the Cityscapes dataset, where we achieve a compression factor up to $66 \times$ while preserving the information required to perform segmentation with a dice coefficient of $0.84$ as compared to $0.88$ achieved using decompressed images while reducing the overall compute by $11\%$.

Brain-computer interfaces (BCIs) are one of the few alternatives to enable locked-in syndrome (LIS) patients to communicate with the external world, while they are the only solution for complete locked-in syndrome (CLIS) patients, who lost the ability to control eye movements. However, successful usage of endogenous electroencephalogram(EEG)-based BCI applications is often not trivial, due to EEG variations between and within sessions and long user training required. In this work we suggest an approach to deal with this two main limitations of EEG-BCIs by inserting a progressive and expandable neurofeedback training program, able to continuously tailor the classifier to the specific user, into a multimodal BCI paradigm. We propose indeed the integration of EEG with a non-brain signal: the pupillary accommodative response (PAR). The PAR is a change in pupil size associated with gaze shifts from far to close targets; it is not governed by the somatic nervous system and is thus potentially preserved after the evolution from LIS to CLIS, which often occurs in neurodegenerative diseases, such as amyotrophic lateral sclerosis. Multimodal BCIs have been broadly investigated in literature, due to their ability to yield better overall control performances, but this would be the first attempt combining EEG and PAR. In the context of the BciPar4Sla, we are exploiting these two signals, with the aim of developing a more reliable BCI, adaptive to the extent of evolving together with the user's ability to elicit the brain phenomena needed for optimal control, and providing support even in the transition from LIS to CLIS.

Supervised classification algorithms are used to solve a growing number of real-life problems around the globe. Their performance is strictly connected with the quality of labels used in training. Unfortunately, acquiring good-quality annotations for many tasks is infeasible or too expensive to be done in practice. To tackle this challenge, active learning algorithms are commonly employed to select only the most relevant data for labeling. However, this is possible only when the quality and quantity of labels acquired from experts are sufficient. Unfortunately, in many applications, a trade-off between annotating individual samples by multiple annotators to increase label quality vs. annotating new samples to increase the total number of labeled instances is necessary. In this paper, we address the issue of faulty data annotations in the context of active learning. In particular, we propose two novel annotation unification algorithms that utilize unlabeled parts of the sample space. The proposed methods require little to no intersection between samples annotated by different experts. Our experiments on four public datasets indicate the robustness and superiority of the proposed methods in both, the estimation of the annotator's reliability, and the assignment of actual labels, against the state-of-the-art algorithms and the simple majority voting.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司