Despite substantial progress in multilingual extractive Question Answering (QA), models with high and uniformly distributed performance across languages remain challenging, especially for languages with limited resources. We study cross-lingual transfer mainly focusing on the Generalized Cross-Lingual Transfer (G-XLT) task, where the question language differs from the context language - a challenge that has received limited attention thus far. Our approach seeks to enhance cross-lingual QA transfer using a high-performing multilingual model trained on a large-scale dataset, complemented by a few thousand aligned QA examples across languages. Our proposed strategy combines cross-lingual sampling and advanced self-distillation training in generations to tackle the previous challenge. Notably, we introduce the novel mAP@k coefficients to fine-tune self-knowledge distillation loss, dynamically regulating the teacher's model knowledge to perform a balanced and effective knowledge transfer. We extensively evaluate our approach to assess XLT and G-XLT capabilities in extractive QA. Results reveal that our self-knowledge distillation approach outperforms standard cross-entropy fine-tuning by a significant margin. Importantly, when compared to a strong baseline that leverages a sizeable volume of machine-translated data, our approach shows competitive results despite the considerable challenge of operating within resource-constrained settings, even in zero-shot scenarios. Beyond performance improvements, we offer valuable insights through comprehensive analyses and an ablation study, further substantiating the benefits and constraints of our approach. In essence, we propose a practical solution to improve cross-lingual QA transfer by leveraging a few data resources in an efficient way.
SoCs are now designed with their own AI accelerator segment to accommodate the ever-increasing demand of Deep Learning (DL) applications. With powerful MAC engines for matrix multiplications, these accelerators show high computing performance. However, because of limited memory resources (i.e., bandwidth and capacity), they fail to achieve optimum system performance during large batch training and inference. In this work, we propose a memory system with high on-chip capacity and bandwidth to shift the gear of AI accelerators from memory-bound to achieving system-level peak performance. We develop the memory system with DTCO-enabled customized SOT-MRAM as large on-chip memory through STCO and detailed characterization of the DL workloads. %We evaluate our workload-aware memory system on the CV and NLP benchmarks and observe significant PPA improvement compared to an SRAM-based in both inference and training modes. Our workload-aware memory system achieves 8X energy and 9X latency improvement on Computer Vision (CV) benchmarks in training and 8X energy and 4.5X latency improvement on Natural Language Processing (NLP) benchmarks in training while consuming only around 50% of SRAM area at iso-capacity.
We introduce PACOH-RL, a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics. PACOH-RL meta-learns priors for the dynamics model, allowing swift adaptation to new dynamics with minimal interaction data. Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics, where data is costly to obtain. To address this, PACOH-RL incorporates regularization and epistemic uncertainty quantification in both the meta-learning and task adaptation stages. When facing new dynamics, we use these uncertainty estimates to effectively guide exploration and data collection. Overall, this enables positive transfer, even when access to data from prior tasks or dynamic settings is severely limited. Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions. Finally, on a real robotic car, we showcase the potential for efficient RL policy adaptation in diverse, data-scarce conditions.
Despite making significant progress in multi-modal tasks, current Multi-modal Large Language Models (MLLMs) encounter the significant challenge of hallucination, which may lead to harmful consequences. Therefore, evaluating MLLMs' hallucinations is becoming increasingly important in model improvement and practical application deployment. Previous works are limited in high evaluation costs (e.g., relying on humans or advanced LLMs) and insufficient evaluation dimensions (e.g., types of hallucination and task). In this paper, we propose an LLM-free multi-dimensional benchmark AMBER, which can be used to evaluate both generative task and discriminative task including object existence, object attribute and object relation hallucination. Based on AMBER, we design a low-cost and efficient evaluation pipeline. Additionally, we conduct a comprehensive evaluation and detailed analysis of mainstream MLLMs including GPT-4V(ision), and also give guideline suggestions for mitigating hallucinations. The data and code of AMBER are available at //github.com/junyangwang0410/AMBER.
The integration of machine learning (ML) into cyber-physical systems (CPS) offers significant benefits, including enhanced efficiency, predictive capabilities, real-time responsiveness, and the enabling of autonomous operations. This convergence has accelerated the development and deployment of a range of real-world applications, such as autonomous vehicles, delivery drones, service robots, and telemedicine procedures. However, the software development life cycle (SDLC) for AI-infused CPS diverges significantly from traditional approaches, featuring data and learning as two critical components. Existing verification and validation techniques are often inadequate for these new paradigms. In this study, we pinpoint the main challenges in ensuring formal safety for learningenabled CPS.We begin by examining testing as the most pragmatic method for verification and validation, summarizing the current state-of-the-art methodologies. Recognizing the limitations in current testing approaches to provide formal safety guarantees, we propose a roadmap to transition from foundational probabilistic testing to a more rigorous approach capable of delivering formal assurance.
Entity resolution (ER) is the process of identifying records that refer to the same entities within one or across multiple databases. Numerous techniques have been developed to tackle ER challenges over the years, with recent emphasis placed on machine and deep learning methods for the matching phase. However, the quality of the benchmark datasets typically used in the experimental evaluations of learning-based matching algorithms has not been examined in the literature. To cover this gap, we propose four different approaches to assessing the difficulty and appropriateness of 13 established datasets: two theoretical approaches, which involve new measures of linearity and existing measures of complexity, and two practical approaches: the difference between the best non-linear and linear matchers, as well as the difference between the best learning-based matcher and the perfect oracle. Our analysis demonstrates that most of the popular datasets pose rather easy classification tasks. As a result, they are not suitable for properly evaluating learning-based matching algorithms. To address this issue, we propose a new methodology for yielding benchmark datasets. We put it into practice by creating four new matching tasks, and we verify that these new benchmarks are more challenging and therefore more suitable for further advancements in the field.
Multi-modality foundation models, as represented by GPT-4V, have brought a new paradigm for low-level visual perception and understanding tasks, that can respond to a broad range of natural human instructions in a model. While existing foundation models have shown exciting potentials on low-level visual tasks, their related abilities are still preliminary and need to be improved. In order to enhance these models, we conduct a large-scale subjective experiment collecting a vast number of real human feedbacks on low-level vision. Each feedback follows a pathway that starts with a detailed description on the low-level visual appearance (*e.g. clarity, color, brightness* of an image, and ends with an overall conclusion, with an average length of 45 words. The constructed **Q-Pathway** dataset includes 58K detailed human feedbacks on 18,973 images with diverse low-level appearance. Moreover, to enable foundation models to robustly respond to diverse types of questions, we design a GPT-participated conversion to process these feedbacks into diverse-format 200K instruction-response pairs. Experimental results indicate that the **Q-Instruct** consistently elevates low-level perception and understanding abilities across several foundational models. We anticipate that our datasets can pave the way for a future that general intelligence can perceive, understand low-level visual appearance and evaluate visual quality like a human. Our dataset, model zoo, and demo is published at: //q-future.github.io/Q-Instruct.
Recent advances in vision-language pre-trained models (VLPs) have significantly increased visual understanding and cross-modal analysis capabilities. Companies have emerged to provide multi-modal Embedding as a Service (EaaS) based on VLPs (e.g., CLIP-based VLPs), which cost a large amount of training data and resources for high-performance service. However, existing studies indicate that EaaS is vulnerable to model extraction attacks that induce great loss for the owners of VLPs. Protecting the intellectual property and commercial ownership of VLPs is increasingly crucial yet challenging. A major solution of watermarking model for EaaS implants a backdoor in the model by inserting verifiable trigger embeddings into texts, but it is only applicable for large language models and is unrealistic due to data and model privacy. In this paper, we propose a safe and robust backdoor-based embedding watermarking method for VLPs called VLPMarker. VLPMarker utilizes embedding orthogonal transformation to effectively inject triggers into the VLPs without interfering with the model parameters, which achieves high-quality copyright verification and minimal impact on model performance. To enhance the watermark robustness, we further propose a collaborative copyright verification strategy based on both backdoor trigger and embedding distribution, enhancing resilience against various attacks. We increase the watermark practicality via an out-of-distribution trigger selection approach, removing access to the model training data and thus making it possible for many real-world scenarios. Our extensive experiments on various datasets indicate that the proposed watermarking approach is effective and safe for verifying the copyright of VLPs for multi-modal EaaS and robust against model extraction attacks. Our code is available at //github.com/Pter61/vlpmarker.
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models. Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering. However, clustering errors are inevitable. To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID. Specifically, before clustering, the relation between unlabeled images is explored based on a graph correlation learning (GCL) module and the refined features are then used for clustering to generate high-quality pseudo-labels.Thus, GCL adaptively mines the relationship between samples in a mini-batch to reduce the impact of abnormal clustering when training. To train the network more effectively, we further propose a selective contrastive learning (SCL) method with a selective memory bank update policy. Extensive experiments demonstrate that our method shows much better results than most state-of-the-art unsupervised methods on Market1501, DukeMTMC-reID and MSMT17 datasets. We will release the code for model reproduction.
Previous cross-lingual knowledge graph (KG) alignment studies rely on entity embeddings derived only from monolingual KG structural information, which may fail at matching entities that have different facts in two KGs. In this paper, we introduce the topic entity graph, a local sub-graph of an entity, to represent entities with their contextual information in KG. From this view, the KB-alignment task can be formulated as a graph matching problem; and we further propose a graph-attention based solution, which first matches all entities in two topic entity graphs, and then jointly model the local matching information to derive a graph-level matching vector. Experiments show that our model outperforms previous state-of-the-art methods by a large margin.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.