亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph neural networks (GNNs) have shown great success in detecting intellectual property (IP) piracy and hardware Trojans (HTs). However, the machine learning community has demonstrated that GNNs are susceptible to data poisoning attacks, which result in GNNs performing abnormally on graphs with pre-defined backdoor triggers (realized using crafted subgraphs). Thus, it is imperative to ensure that the adoption of GNNs should not introduce security vulnerabilities in critical security frameworks. Existing backdoor attacks on GNNs generate random subgraphs with specific sizes/densities to act as backdoor triggers. However, for Boolean circuits, backdoor triggers cannot be randomized since the added structures should not affect the functionality of a design. We explore this threat and develop PoisonedGNN as the first backdoor attack on GNNs in the context of hardware design. We design and inject backdoor triggers into the register-transfer- or the gate-level representation of a given design without affecting the functionality to evade some GNN-based detection procedures. To demonstrate the effectiveness of PoisonedGNN, we consider two case studies: (i) Hiding HTs and (ii) IP piracy. Our experiments on TrustHub datasets demonstrate that PoisonedGNN can hide HTs and IP piracy from advanced GNN-based detection platforms with an attack success rate of up to 100%.

相關內容

Backdoors implanted in pre-trained language models (PLMs) can be transferred to various downstream tasks, which exposes a severe security threat. However, most existing backdoor attacks against PLMs are un-targeted and task-specific. Few targeted and task-agnostic methods use manually pre-defined triggers and output representations, which prevent the attacks from being more effective and general. In this paper, we first summarize the requirements that a more threatening backdoor attack against PLMs should satisfy, and then propose a new backdoor attack method called UOR, which breaks the bottleneck of the previous approach by turning manual selection into automatic optimization. Specifically, we define poisoned supervised contrastive learning which can automatically learn the more uniform and universal output representations of triggers for various PLMs. Moreover, we use gradient search to select appropriate trigger words which can be adaptive to different PLMs and vocabularies. Experiments show that our method can achieve better attack performance on various text classification tasks compared to manual methods. Further, we tested our method on PLMs with different architectures, different usage paradigms, and more difficult tasks, which demonstrated the universality of our method.

The increasing digitalization of power grids and especially the shift towards IP-based communication drastically increase the susceptibility to cyberattacks, potentially leading to blackouts and physical damage. Understanding the involved risks, the interplay of communication and physical assets, and the effects of cyberattacks are paramount for the uninterrupted operation of this critical infrastructure. However, as the impact of cyberattacks cannot be researched in real-world power grids, current efforts tend to focus on analyzing isolated aspects at small scales, often covering only either physical or communication assets. To fill this gap, we present WATTSON, a comprehensive research environment that facilitates reproducing, implementing, and analyzing cyberattacks against power grids and, in particular, their impact on both communication and physical processes. We validate WATTSON's accuracy against a physical testbed and show its scalability to realistic power grid sizes. We then perform authentic cyberattacks, such as Industroyer, within the environment and study their impact on the power grid's energy and communication side. Besides known vulnerabilities, our results reveal the ripple effects of susceptible communication on complex cyber-physical processes and thus lay the foundation for effective countermeasures.

Technological advances in the telecommunications industry have brought significant advantages in the management and performance of communication networks. The railway industry is among the ones that have benefited the most. These interconnected systems, however, have a wide area exposed to cyberattacks. This survey examines the cybersecurity aspects of railway systems by considering the standards, guidelines, frameworks, and technologies used in the industry to assess and mitigate cybersecurity risks, particularly regarding the relationship between safety and security. To do so, we dedicate specific attention to signaling, which fundamental reliance on computer and communication technologies allows us to explore better the multifaceted nature of the security of modern hyperconnected railway systems. With this in mind, we then move on to analyzing the approaches and tools that practitioners can use to facilitate the cyber security process. In detail, we present a view on cyber ranges as an enabling technology to model and emulate computer networks and attack-defense scenarios, study vulnerabilities' impact, and finally devise countermeasures. We also discuss several possible use cases strongly connected to the railway industry reality.

Hazard rate functions of natural and manufactured systems often show a bathtub shaped failure rate. A high early rate of failures is followed by an extended period of useful working life where failures are rare, and finally the failure rate increases as the system reaches the end of its life. Parametric modelling of such hazard rate functions can lead to unnecessarily restrictive assumptions on the function shape, however the most common non-parametric estimator (the Kaplan-Meier estimator) does not allow specification of the requirement that it be bathtub shaped. In this paper we extend the Lo and Weng (1989) approach and specify four nonparametric bathtub hazard rate functions drawn from Gamma Process Priors. We implement and demonstrate simulation for these four models.

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.

北京阿比特科技有限公司