The emerging intelligent reflecting surface (IRS) technology introduces the potential of controlled light propagation in visible light communication (VLC) systems. This concept opens the door for new applications in which the channel itself can be altered to achieve specific key performance indicators. In this paper, for the first time in the open literature, we investigate the role that IRSs can play in enhancing the link reliability in VLC systems employing non-orthogonal multiple access (NOMA). We propose a framework for the joint optimisation of the NOMA and IRS parameters and show that it provides significant enhancements in link reliability. The enhancement is even more pronounced when the VLC channel is subject to blockage and random device orientation.
In this paper, we propose two novel cooperative-non-orthogonal-multiple-access (C-NOMA) and cooperative-rate-splitting-multiple-access (C-RSMA) schemes for uplink user cooperation. At the first mini-slot of these schemes, each user transmits its signal and receives the transmitted signal of the other user in full-duplex mode, and at the second mini-slot, each user relays the other user's message with amplify-and-forward (AF) protocol. At both schemes, to achieve better spectral efficiency, users transmit signals in the non-orthogonal mode in both mini-slots. In C-RSMA, we also apply the rate-splitting method in which the message of each user is divided into two streams. In the proposed detection schemes for C-NOMA and C-RSMA, we apply a combination of maximum-ratio-combining (MRC) and successive-interference-cancellation (SIC). Then, we derive the achievable rates for C-NOMA and C-RSMA, and formulate two optimization problems to maximize the minimum rate of two users by considering the proportional fairness coefficient. We propose two power allocation algorithms based on successive-convex-approximation (SCA) and geometric-programming (GP) to solve these non-convex problems. Next, we derive the asymptotic outage probability of the proposed C-NOMA and C-RSMA schemes, and prove that they achieve diversity order of two. Finally, the above-mentioned performance is confirmed by simulations.
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we advocate a novel protocol for the uplink communication in the IRS-assisted massive MIMO systems. Under this protocol, the IRS reflection coefficients are optimized based on the channel covariance matrices, which are generally fixed for many coherence blocks, to boost the long-term performance. Then, given the IRS reflecting coefficients, the BS beamforming vectors are designed in each coherence block based on the effective channel of each user, which is the superposition of its direct and reflected user-IRS-BS channels, to improve the instantaneous performance. Since merely the user effective channels are estimated in each coherence block, the training overhead of this protocol is the same as that in the legacy wireless systems without IRSs. Moreover, in the asymptotic regime that the numbers of IRS elements and BS antennas both go to infinity with a fixed ratio, we manage to first characterize the minimum mean-squared error (MMSE) estimators of the user effective channels and then quantify the closed-form user achievable rates as functions of channel covariance matrices with channel training overhead and estimation error taken into account. Interestingly, it is shown that the properties of channel hardening and favorable propagation still hold for the user effective channels, and satisfactory user rates are thus achievable even if simple BS beamforming solutions, e.g., maximal-ratio combining, are employed. Finally, thanks to the rate characterization, we design a low-complexity algorithm to optimize the IRS reflection coefficients based on channel covariance matrices.
Wireless sensor networks (WSNs) comprise several spatially distributed sensor nodes that communicate over an open radio channel, thereby making the network vulnerable to eavesdroppers (EDs). As a physical layer security approach, intelligent reflecting surface (IRS) technology has recently emerged as an effective technique for security in WSNs. Unlike prior works that do not consider the role of the IRS in facilitating the parameter estimation in WSN, we propose a scheme for joint transmit and reflective beamformer (JTRB) design for secure parameter estimation at the fusion center (FC) in the presence of an ED. To solve the resulting non-convex optimization problem, we develop a semidefinite relaxation (SDR)-based iterative algorithm, which alternately yields the transmit beamformer at each sensor node and the corresponding reflection phases at the IRS, to achieve the minimum mean-squared error (MMSE) parameter estimate at the FC, subject to transmit power and ED signal-to-noise ratio (SNR) constraints. Our simulation results demonstrate robust MSE and security performance of the proposed IRS-based JTRB technique.
Industry 5.0 envisions close cooperation between humans and machines that requires ultra-reliable and low latency communications (URLLC). Intelligent Reflecting Surface (IRS) has the potential to play a crucial role in realizing wireless URLLC for Industry 5.0. IRS is forecasted to be a key enabler of 6G wireless communication networks as it can significantly improve the wireless network's performance by creating a controllable radio environment. In this paper, we first provide an overview of IRS technology and then conceptualize the potential for IRS implementation in a smart manufacturing environment to support the emergence of Industry 5.0 with a series of applications. Finally, to stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of the IRS technology in modern smart manufacturing.
This work examines the performance gain achieved by deploying an intelligent reflecting surface (IRS) in covert communications. To this end, we formulate the joint design of the transmit power and the IRS reflection coefficients by taking into account the communication covertness for the cases with global channel state information (CSI) and without a warden's instantaneous CSI. For the case of global CSI, we first prove that perfect covertness is achievable with the aid of the IRS even for a single-antenna transmitter, which is impossible without an IRS. Then, we develop a penalty successive convex approximation (PSCA) algorithm to tackle the design problem. Considering the high complexity of the PSCA algorithm, we further propose a low-complexity two-stage algorithm, where analytical expressions for the transmit power and the IRS's reflection coefficients are derived. For the case without the warden's instantaneous CSI, we first derive the covertness constraint analytically facilitating the optimal phase shift design. Then, we consider three hardware-related constraints on the IRS's reflection amplitudes and determine their optimal designs together with the optimal transmit power. Our examination shows that significant performance gain can be achieved by deploying an IRS into covert communications.
This paper considers an active intelligent reflecting surface (IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy and then transmit information to a hybrid access point (HAP). Different from the existing works on passive IRS-aided WPCNs, this is the first work that introduces the active IRS in WPCNs. To guarantee fairness, the problem is formulated as an amplifying power-limited weighted sum throughput (WST) maximization problem, which is solved by successive convex approximation technique and fractional programming alternatively. To balance the performance and complexity tradeoff, three beamforming setups are considered at the active IRS, namely user-adaptive IRS beamforming, uplink-adaptive IRS beamforming, and static IRS beamforming. Numerical results demonstrate the significant superiority of employing active IRS in WPCNs and the benefits of dynamic IRS beamforming. Specifically, it is found that compared to the passive IRS, the active IRS not only improves the WST greatly, but also is more energy-efficient and can significantly extend the transmission coverage. Moreover, different from the symmetric deployment strategy of passive IRS, it is more preferable to deploy the active IRS near the devices.
Conversational Information Retrieval (CIR) is an emerging field of Information Retrieval (IR) at the intersection of interactive IR and dialogue systems for open domain information needs. In order to optimize these interactions and enhance the user experience, it is necessary to improve IR models by taking into account sequential heterogeneous user-system interactions. Reinforcement learning has emerged as a paradigm particularly suited to optimize sequential decision making in many domains and has recently appeared in IR. However, training these systems by reinforcement learning on users is not feasible. One solution is to train IR systems on user simulations that model the behavior of real users. Our contribution is twofold: 1)reviewing the literature on user modeling and user simulation for information access, and 2) discussing the different research perspectives for user simulations in the context of CIR
We consider in this paper a new intelligent reflecting surface (IRS)-aided LEO satellite communication system, by utilizing the controllable phase shifts of massive passive reflecting elements to achieve flexible beamforming, which copes with the time-varying channel between the high-mobility satellite (SAT) and ground node (GN) cost-effectively. In particular, we propose a new architecture for IRS-aided LEO satellite communication where IRSs are deployed at both sides of the SAT and GN, and study their cooperative passive beamforming (CPB) design over line-of-sight (LoS)-dominant single-reflection and double-reflection channels. Specifically, we jointly optimize the active transmit/receive beamforming at the SAT/GN as well as the CPB at two-sided IRSs to maximize the overall channel gain from the SAT to each GN. Interestingly, we show that under LoS channel conditions, the high-dimensional SAT-GN channel can be decomposed into the outer product of two low-dimensional vectors. By exploiting the decomposed SAT-GN channel, we decouple the original beamforming optimization problem into two simpler subproblems corresponding to the SAT and GN sides, respectively, which are both solved in closed-form. Furthermore, we propose an efficient transmission protocol to conduct channel estimation and beam tracking, which only requires independent processing of the SAT and GN in a distributed manner, thus substantially reducing the implementation complexity. Simulation results validate the performance advantages of the proposed IRS-aided LEO satellite communication system with two-sided cooperative IRSs, as compared to various baseline schemes such as the conventional reflect-array and one-sided IRS.
Non-orthogonal multiple access (NOMA) is considered a key technology for improving the spectral efficiency of fifth-generation (5G) and beyond 5G cellular networks. NOMA is beneficial when the channel vectors of the users are in the same direction, which is not always possible in conventional wireless systems. With the help of a reconfigurable intelligent surface (RIS), the base station can control the directions of the channel vectors of the users. Thus, by combining both technologies, the RIS-assisted NOMA systems are expected to achieve greater improvements in the network throughput. However, ideal phase control at the RIS is unrealizable in practice because of the imperfections in the channel estimations and the hardware limitations. This imperfection in phase control can have a significant impact on the system performance. Motivated by this, in this paper, we consider an RIS-assisted uplink NOMA system in the presence of imperfect phase compensation. We formulate the criterion for pairing the users that achieves minimum required data rates. We propose adaptive user pairing algorithms that maximize spectral or energy efficiency. We then derive various bounds on power allocation factors for the paired users. Through extensive simulation results, we show that the proposed algorithms significantly outperform the state-of-the-art algorithms in terms of spectral and energy efficiency.
Joint communications and sensing is a promising 6G technology, and the challenge is how to integrate them efficiently. Existing frequency-division and time-division coexistence can hardly bring a gain of integration. Directly using orthogonal frequency-division multiplexing (OFDM) to sense requires complex in-band full-duplex to cancel the selfinterference (SI). To solve these problems, this paper proposes novel coexistence schemes to gain super sensing range (SSR) and simple SI cancellation. SSR enables JCS to gain a sensing range of a sensing-only scheme and shares the resources with communications. Random time-division is proposed to gain a super Doppler range. Flexible sensing implanted OFDM (FSIOFDM) is also proposed. FSI-OFDM uses random sensing occasions to gain super Doppler range, as well as utilizes the fixed tail sensing occasions to achieve supper distance range. The simulation results show that the proposed schemes can gain SSR with limited resources.