亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text-to-SQL is a task that converts a natural language question into a structured query language (SQL) to retrieve information from a database. Large language models (LLMs) work well in natural language generation tasks, but they are not specifically pre-trained to understand the syntax and semantics of SQL commands. In this paper, we propose an LLM-based framework for Text-to-SQL which retrieves helpful demonstration examples to prompt LLMs. However, questions with different database schemes can vary widely, even if the intentions behind them are similar and the corresponding SQL queries exhibit similarities. Consequently, it becomes crucial to identify the appropriate SQL demonstrations that align with our requirements. We design a de-semanticization mechanism that extracts question skeletons, allowing us to retrieve similar examples based on their structural similarity. We also model the relationships between question tokens and database schema items (i.e., tables and columns) to filter out scheme-related information. Our framework adapts the range of the database schema in prompts to balance length and valuable information. A fallback mechanism allows for a more detailed schema to be provided if the generated SQL query fails. Ours outperforms state-of-the-art models and demonstrates strong generalization ability on three cross-domain Text-to-SQL benchmarks.

相關內容

 SQL 全名是結構化查詢語言,是用于數據庫中的標準數據查詢語言,IBM 公司最早使用在其開發的數據庫系統中。

Cooperative inference in Mobile Edge Computing (MEC), achieved by deploying partitioned Deep Neural Network (DNN) models between resource-constrained user equipments (UEs) and edge servers (ESs), has emerged as a promising paradigm. Firstly, we consider scenarios of continuous Artificial Intelligence (AI) task arrivals, like the object detection for video streams, and utilize a serial queuing model for the accurate evaluation of End-to-End (E2E) delay in cooperative edge inference. Secondly, to enhance the long-term performance of inference systems, we formulate a multi-slot stochastic E2E delay optimization problem that jointly considers model partitioning and multi-dimensional resource allocation. Finally, to solve this problem, we introduce a Lyapunov-guided Multi-Dimensional Optimization algorithm (LyMDO) that decouples the original problem into per-slot deterministic problems, where Deep Reinforcement Learning (DRL) and convex optimization are used for joint optimization of partitioning decisions and complementary resource allocation. Simulation results show that our approach effectively improves E2E delay while balancing long-term resource constraints.

Large language models (LLMs), such as ChatGPT, have simplified text generation tasks, yet their inherent privacy risks are increasingly garnering attention. While differential privacy techniques have been successfully applied to text classification tasks, the resultant semantic bias makes them unsuitable for text generation. Homomorphic encryption inference methods have also been introduced, however, the significant computational and communication costs limit their viability. Furthermore, closed-source, black-box models such as GPT-4 withhold their architecture, thwarting certain privacy-enhancing strategies such as splitting inference into local and remote and then adding noise when communicating. To overcome these challenges, we introduce PrivInfer, the first privacy-preserving inference framework for black-box LLMs in text generation. Inspired by human writing, PrivInfer employs differential privacy methods to generate perturbed prompts for remote LLMs inference and extracts the meaningful response from the remote perturbed results. We also introduce RANTEXT, a differential privacy scheme specifically for LLMs that leverages random adjacency in text perturbations. Experimental results indicate that PrivInfer is comparable to GPT-4 in terms of text generation quality while protecting privacy, and RANTEXT provides enhanced privacy protection against three types of differential privacy attacks, including our newly introduced GPT inference attack, compared to baseline methods.

End-to-end sign language translation (SLT) aims to convert sign language videos into spoken language texts directly without intermediate representations. It has been a challenging task due to the modality gap between sign videos and texts and the data scarcity of labeled data. To tackle these challenges, we propose a novel Cross-modality Data Augmentation (XmDA) framework to transfer the powerful gloss-to-text translation capabilities to end-to-end sign language translation (i.e. video-to-text) by exploiting pseudo gloss-text pairs from the sign gloss translation model. Specifically, XmDA consists of two key components, namely, cross-modality mix-up and cross-modality knowledge distillation. The former explicitly encourages the alignment between sign video features and gloss embeddings to bridge the modality gap. The latter utilizes the generation knowledge from gloss-to-text teacher models to guide the spoken language text generation. Experimental results on two widely used SLT datasets, i.e., PHOENIX-2014T and CSL-Daily, demonstrate that the proposed XmDA framework significantly and consistently outperforms the baseline models. Extensive analyses confirm our claim that XmDA enhances spoken language text generation by reducing the representation distance between videos and texts, as well as improving the processing of low-frequency words and long sentences.

Trust-region (TR) and adaptive regularization using cubics (ARC) have proven to have some very appealing theoretical properties for non-convex optimization by concurrently computing function value, gradient, and Hessian matrix to obtain the next search direction and the adjusted parameters. Although stochastic approximations help largely reduce the computational cost, it is challenging to theoretically guarantee the convergence rate. In this paper, we explore a family of stochastic TR and ARC methods that can simultaneously provide inexact computations of the Hessian matrix, gradient, and function values. Our algorithms require much fewer propagations overhead per iteration than TR and ARC. We prove that the iteration complexity to achieve $\epsilon$-approximate second-order optimality is of the same order as the exact computations demonstrated in previous studies. Additionally, the mild conditions on inexactness can be met by leveraging a random sampling technology in the finite-sum minimization problem. Numerical experiments with a non-convex problem support these findings and demonstrate that, with the same or a similar number of iterations, our algorithms require less computational overhead per iteration than current second-order methods.

Large language models (LLMs) have recently shown great advances in a variety of tasks, including natural language understanding and generation. However, their use in high-stakes decision-making scenarios is still limited due to the potential for errors. Selective prediction is a technique that can be used to improve the reliability of the LLMs by allowing them to abstain from making predictions when they are unsure of the answer. In this work, we propose a novel framework for adaptation with self-evaluation to improve the selective prediction performance of LLMs. Our framework is based on the idea of using parameter-efficient tuning to adapt the LLM to the specific task at hand while improving its ability to perform self-evaluation. We evaluate our method on a variety of question-answering (QA) datasets and show that it outperforms state-of-the-art selective prediction methods. For example, on the CoQA benchmark, our method improves the AUACC from 91.23% to 92.63% and improves the AUROC from 74.61% to 80.25%.

Parameter-efficient fine-tuning (PEFT) has shown its effectiveness in adapting the pre-trained language models to downstream tasks while only updating a small number of parameters. Despite the success, most existing methods independently adapt to each task without considering knowledge transfer between tasks and are limited to low-data regimes. To overcome this issue, we propose Prototype-based HyperAdapter (PHA), a novel framework built on the adapter-tuning and hypernetwork. It introduces an instance-dense retriever and a prototypical hypernetwork to generate the conditional modules in a sample-efficient manner. This leads to comparable performance improvements against existing PEFT methods on multi-task learning and few-shot transfer learning. More importantly, when the available data size gets smaller, our method outperforms other strong baselines by a large margin. Based on our extensive empirical experiments across various datasets, we demonstrate that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.

Recent advancements in biological research leverage the integration of molecules, proteins, and natural language to enhance drug discovery. However, current models exhibit several limitations, such as the generation of invalid molecular SMILES, underutilization of contextual information, and equal treatment of structured and unstructured knowledge. To address these issues, we propose $\mathbf{BioT5}$, a comprehensive pre-training framework that enriches cross-modal integration in biology with chemical knowledge and natural language associations. $\mathbf{BioT5}$ utilizes SELFIES for $100%$ robust molecular representations and extracts knowledge from the surrounding context of bio-entities in unstructured biological literature. Furthermore, $\mathbf{BioT5}$ distinguishes between structured and unstructured knowledge, leading to more effective utilization of information. After fine-tuning, BioT5 shows superior performance across a wide range of tasks, demonstrating its strong capability of capturing underlying relations and properties of bio-entities. Our code is available at $\href{//github.com/QizhiPei/BioT5}{Github}$.

In the field of Artificial (General) Intelligence (AI), the several recent advancements in Natural language processing (NLP) activities relying on Large Language Models (LLMs) have come to encourage the adoption of LLMs as scientific models of language. While the terminology employed for the characterization of LLMs favors their embracing as such, it is not clear that they are in a place to offer insights into the target system they seek to represent. After identifying the most important theoretical and empirical risks brought about by the adoption of scientific models that lack transparency, we discuss LLMs relating them to every scientific model's fundamental components: the object, the medium, the meaning and the user. We conclude that, at their current stage of development, LLMs hardly offer any explanations for language, and then we provide an outlook for more informative future research directions on this topic.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.

北京阿比特科技有限公司