亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-training strategies based on self-supervised learning (SSL) have proven to be effective pretext tasks for many downstream tasks in computer vision. Due to the significant disparity between medical and natural images, the application of typical SSL is not straightforward in medical imaging. Additionally, those pretext tasks often lack context, which is critical for computer-aided clinical decision support. In this paper, we developed a longitudinal masked auto-encoder (MAE) based on the well-known Transformer-based MAE. In particular, we explored the importance of time-aware position embedding as well as disease progression-aware masking. Taking into account the time between examinations instead of just scheduling them offers the benefit of capturing temporal changes and trends. The masking strategy, for its part, evolves during follow-up to better capture pathological changes, ensuring a more accurate assessment of disease progression. Using OPHDIAT, a large follow-up screening dataset targeting diabetic retinopathy (DR), we evaluated the pre-trained weights on a longitudinal task, which is to predict the severity label of the next visit within 3 years based on the past time series examinations. Our results demonstrated the relevancy of both time-aware position embedding and masking strategies based on disease progression knowledge. Compared to popular baseline models and standard longitudinal Transformers, these simple yet effective extensions significantly enhance the predictive ability of deep classification models.

相關內容

An additive Runge-Kutta method is used for the time stepping, which integrates the linear stiff terms by an explicit singly diagonally implicit Runge-Kutta (ESDIRK) method and the nonlinear terms by an explicit Runge-Kutta (ERK) method. In each time step, the implicit solve is performed by the recently developed Hierarchical Poincar\'e-Steklov (HPS) method. This is a fast direct solver for elliptic equations that decomposes the space domain into a hierarchical tree of subdomains and builds spectral collocation solvers locally on the subdomains. These ideas are naturally combined in the presented method since the singly diagonal coefficient in ESDIRK and a fixed time-step ensures that the coefficient matrix in the implicit solve of HPS remains the same for all time stages. This means that the precomputed inverse can be efficiently reused, leading to a scheme with complexity (in two dimensions) $\mathcal{O}(N^{1.5})$ for the precomputation where the solution operator to the elliptic problems is built, and then $\mathcal{O}(N \log N)$ for the solve in each time step. The stability of the method is proved for first order in time and any order in space, and numerical evidence substantiates a claim of stability for a much broader class of time discretization methods. Numerical experiments supporting the accuracy of efficiency of the method in one and two dimensions are presented.

The grading of open-ended questions is a high-effort, high-impact task in education. Automating this task promises a significant reduction in workload for education professionals, as well as more consistent grading outcomes for students, by circumventing human subjectivity and error. While recent breakthroughs in AI technology might facilitate such automation, this has not been demonstrated at scale. It this paper, we introduce a novel automatic short answer grading (ASAG) system. The system is based on a fine-tuned open-source transformer model which we trained on large set of exam data from university courses across a large range of disciplines. We evaluated the trained model's performance against held-out test data in a first experiment and found high accuracy levels across a broad spectrum of unseen questions, even in unseen courses. We further compared the performance of our model with that of certified human domain experts in a second experiment: we first assembled another test dataset from real historical exams - the historic grades contained in that data were awarded to students in a regulated, legally binding examination process; we therefore considered them as ground truth for our experiment. We then asked certified human domain experts and our model to grade the historic student answers again without disclosing the historic grades. Finally, we compared the hence obtained grades with the historic grades (our ground truth). We found that for the courses examined, the model deviated less from the official historic grades than the human re-graders - the model's median absolute error was 44 % smaller than the human re-graders', implying that the model is more consistent than humans in grading. These results suggest that leveraging AI enhanced grading can reduce human subjectivity, improve consistency and thus ultimately increase fairness.

Graph self-supervised learning has sparked a research surge in training informative representations without accessing any labeled data. However, our understanding of graph self-supervised learning remains limited, and the inherent relationships between various self-supervised tasks are still unexplored. Our paper aims to provide a fresh understanding of graph self-supervised learning based on task correlations. Specifically, we evaluate the performance of the representations trained by one specific task on other tasks and define correlation values to quantify task correlations. Through this process, we unveil the task correlations between various self-supervised tasks and can measure their expressive capabilities, which are closely related to downstream performance. By analyzing the correlation values between tasks across various datasets, we reveal the complexity of task correlations and the limitations of existing multi-task learning methods. To obtain more capable representations, we propose Graph Task Correlation Modeling (GraphTCM) to illustrate the task correlations and utilize it to enhance graph self-supervised training. The experimental results indicate that our method significantly outperforms existing methods across various downstream tasks.

Self-training (ST) is a simple yet effective semi-supervised learning method. However, why and how ST improves generalization performance by using potentially erroneous pseudo-labels is still not well understood. To deepen the understanding of ST, we derive and analyze a sharp characterization of the behavior of iterative ST when training a linear classifier by minimizing the ridge-regularized convex loss on binary Gaussian mixtures, in the asymptotic limit where input dimension and data size diverge proportionally. The results show that ST improves generalization in different ways depending on the number of iterations. When the number of iterations is small, ST improves generalization performance by fitting the model to relatively reliable pseudo-labels and updating the model parameters by a large amount at each iteration. This suggests that ST works intuitively. On the other hand, with many iterations, ST can gradually improve the direction of the classification plane by updating the model parameters incrementally, using soft labels and small regularization. It is argued that this is because the small update of ST can extract information from the data in an almost noiseless way. However, in the presence of label imbalance, the generalization performance of ST underperforms supervised learning with true labels. To overcome this, two heuristics are proposed to enable ST to achieve nearly compatible performance with supervised learning even with significant label imbalance.

We study how to construct a stochastic process on a finite interval with given `roughness' and finite joint moments of marginal distributions. We first extend Ciesielski's isomorphism along a general sequence of partitions, and provide a characterization of H\"older regularity of a function in terms of its Schauder coefficients. Using this characterization we provide a better (pathwise) estimator of H\"older exponent. As an additional application, we construct fake (fractional) Brownian motions with some path properties and finite moments of marginal distributions same as (fractional) Brownian motions. These belong to non-Gaussian families of stochastic processes which are statistically difficult to distinguish from real (fractional) Brownian motions.

Transparency and explainability in image classification are essential for establishing trust in machine learning models and detecting biases and errors. State-of-the-art explainability methods generate saliency maps to show where a specific class is identified, without providing a detailed explanation of the model's decision process. Striving to address such a need, we introduce a post-hoc method that explains the entire feature extraction process of a Convolutional Neural Network. These explanations include a layer-wise representation of the features the model extracts from the input. Such features are represented as saliency maps generated by clustering and merging similar feature maps, to which we associate a weight derived by generalizing Grad-CAM for the proposed methodology. To further enhance these explanations, we include a set of textual labels collected through a gamified crowdsourcing activity and processed using NLP techniques and Sentence-BERT. Finally, we show an approach to generate global explanations by aggregating labels across multiple images.

The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.

A change point detection (CPD) framework assisted by a predictive machine learning model called "Predict and Compare" is introduced and characterised in relation to other state-of-the-art online CPD routines which it outperforms in terms of false positive rate and out-of-control average run length. The method's focus is on improving standard methods from sequential analysis such as the CUSUM rule in terms of these quality measures. This is achieved by replacing typically used trend estimation functionals such as the running mean with more sophisticated predictive models (Predict step), and comparing their prognosis with actual data (Compare step). The two models used in the Predict step are the ARIMA model and the LSTM recursive neural network. However, the framework is formulated in general terms, so as to allow the use of other prediction or comparison methods than those tested here. The power of the method is demonstrated in a tribological case study in which change points separating the run-in, steady-state, and divergent wear phases are detected in the regime of very few false positives.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司