亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we concentrate on solving second-order singularly perturbed Fredholm integro-differential equations (SPFIDEs). It is well known that solving these equations analytically is a challenging endeavor because of the presence of boundary and interior layers within the domain. To overcome these challenges, we develop a fitted second-order difference scheme that can capture the layer behavior of the solution accurately and efficiently, which is again, based on the integral identities with exponential basis functions, the composite trapezoidal rule, and an appropriate interpolating quadrature rules with the remainder terms in the integral form on a piecewise uniform mesh. Hence, our numerical method acts as a superior alternative to the existing methods in the literature. Further, using appropriate techniques in error analysis the scheme's convergence and stability have been studied in the discrete max norm. We have provided necessary experimental evidence that corroborates the theoretical results with a high degree of accuracy.

相關內容

In this paper, we propose a class of nonlocal models to approximate the Poisson model on manifolds with homogeneous Neumann boundary condition, where the manifolds are assumed to be embedded in high dimensional Euclid spaces. In comparison to the existing nonlocal approximation of Poisson models with Neumann boundary, we optimize the truncation error of model by adding an augmented term along the $2\delta$ layer of boundary, with $2\delta$ be the nonlocal interaction horizon. Such term is formulated by the integration of the second order normal derivative of solution through the boundary, while the second order normal derivative is expressed as the difference between the interior Laplacian and the boundary Laplacian. The concentration of our paper is on the construction of nonlocal model, the well-posedness of model, and its second-order convergence rate to its local counterpart. The localization rate of our nonlocal model is currently optimal among all related works even for the case of high dimensional Euclid spaces.

In this paper, we introduce a privacy-preserving stable diffusion framework leveraging homomorphic encryption, called HE-Diffusion, which primarily focuses on protecting the denoising phase of the diffusion process. HE-Diffusion is a tailored encryption framework specifically designed to align with the unique architecture of stable diffusion, ensuring both privacy and functionality. To address the inherent computational challenges, we propose a novel min-distortion method that enables efficient partial image encryption, significantly reducing the overhead without compromising the model's output quality. Furthermore, we adopt a sparse tensor representation to expedite computational operations, enhancing the overall efficiency of the privacy-preserving diffusion process. We successfully implement HE-based privacy-preserving stable diffusion inference. The experimental results show that HE-Diffusion achieves 500 times speedup compared with the baseline method, and reduces time cost of the homomorphically encrypted inference to the minute level. Both the performance and accuracy of the HE-Diffusion are on par with the plaintext counterpart. Our approach marks a significant step towards integrating advanced cryptographic techniques with state-of-the-art generative models, paving the way for privacy-preserving and efficient image generation in critical applications.

We present a new adaptive algorithm for learning discrete distributions under distribution drift. In this setting, we observe a sequence of independent samples from a discrete distribution that is changing over time, and the goal is to estimate the current distribution. Since we have access to only a single sample for each time step, a good estimation requires a careful choice of the number of past samples to use. To use more samples, we must resort to samples further in the past, and we incur a drift error due to the bias introduced by the change in distribution. On the other hand, if we use a small number of past samples, we incur a large statistical error as the estimation has a high variance. We present a novel adaptive algorithm that can solve this trade-off without any prior knowledge of the drift. Unlike previous adaptive results, our algorithm characterizes the statistical error using data-dependent bounds. This technicality enables us to overcome the limitations of the previous work that require a fixed finite support whose size is known in advance and that cannot change over time. Additionally, we can obtain tighter bounds depending on the complexity of the drifting distribution, and also consider distributions with infinite support.

In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size $\gamma$ and momentum parameter $\beta$ that allows us to identify an intrinsic quantity $\lambda = \frac{ \gamma }{ (1 - \beta)^2 }$ which uniquely defines the optimisation path and provides a simple acceleration rule. When training a $2$-layer diagonal linear network in an overparametrised regression setting, we characterise the recovered solution through an implicit regularisation problem. We then prove that small values of $\lambda$ help to recover sparse solutions. Finally, we give similar but weaker results for stochastic momentum gradient descent. We provide numerical experiments which support our claims.

In this work, we introduce an efficient generation procedure to produce synthetic multi-modal datasets of fluid simulations. The procedure can reproduce the dynamics of fluid flows and allows for exploring and learning various properties of their complex behavior, from distinct perspectives and modalities. We employ our framework to generate a set of thoughtfully designed training datasets, which attempt to span specific fluid simulation scenarios in a meaningful way. The properties of our contributions are demonstrated by evaluating recently published algorithms for the neural fluid simulation and fluid inverse rendering tasks using our benchmark datasets. Our contribution aims to fulfill the community's need for standardized training data, fostering more reproducibile and robust research.

Causal inference is a fundamental research topic for discovering the cause-effect relationships in many disciplines. However, not all algorithms are equally well-suited for a given dataset. For instance, some approaches may only be able to identify linear relationships, while others are applicable for non-linearities. Algorithms further vary in their sensitivity to noise and their ability to infer causal information from coupled vs. non-coupled time series. Therefore, different algorithms often generate different causal relationships for the same input. To achieve a more robust causal inference result, this publication proposes a novel data-driven two-phase multi-split causal ensemble model to combine the strengths of different causality base algorithms. In comparison to existing approaches, the proposed ensemble method reduces the influence of noise through a data partitioning scheme in the first phase. To achieve this, the data are initially divided into several partitions and the base algorithms are applied to each partition. Subsequently, Gaussian mixture models are used to identify the causal relationships derived from the different partitions that are likely to be valid. In the second phase, the identified relationships from each base algorithm are then merged based on three combination rules. The proposed ensemble approach is evaluated using multiple metrics, among them a newly developed evaluation index for causal ensemble approaches. We perform experiments using three synthetic datasets with different volumes and complexity, which are specifically designed to test causality detection methods under different circumstances while knowing the ground truth causal relationships. In these experiments, our causality ensemble outperforms each of its base algorithms. In practical applications, the use of the proposed method could hence lead to more robust and reliable causality results.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司