亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper discusses the foundation of methods for accurately grasping the interaction effects. Among the existing methods that capture the interaction effects as terms, PD and ALE are known as global modelagnostic methods in the IML field. ALE, among the two, can theoretically provide a functional decomposition of the prediction function, and this study focuses on functional decomposition. Specifically, we mathematically formalize what we consider to be the requirements that must always be met by a decomposition (interaction decomposition, hereafter, ID) that decomposes the prediction function into main and interaction effect terms. We also present a theorem about how to produce a decomposition that meets these requirements. Furthermore, we confirm that while ALE is ID, PD is not, and we present examples of decomposition that meet the requirements of ID using methods other than existing ones (i.e., new methods).

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 平滑 · 劃分 · 表示 · Performer ·
2024 年 3 月 26 日

This paper deals with Hermite osculatory interpolating splines. For a partition of a real interval endowed with a refinement consisting in dividing each subinterval into two small subintervals, we consider a space of smooth splines with additional smoothness at the vertices of the initial partition, and of the lowest possible degree. A normalized B-spline-like representation for the considered spline space is provided. In addition, several quasi-interpolation operators based on blossoming and control polynomials have also been developed. Some numerical tests are presented and compared with some recent works to illustrate the performance of the proposed approach.

We propose an unfolded accelerated projected-gradient descent procedure to estimate model and algorithmic parameters for image super-resolution and molecule localization problems in image microscopy. The variational lower-level constraint enforces sparsity of the solution and encodes different noise statistics (Gaussian, Poisson), while the upper-level cost assesses optimality w.r.t.~the task considered. In more detail, a standard $\ell_2$ cost is considered for image reconstruction (e.g., deconvolution/super-resolution, semi-blind deconvolution) problems, while a smoothed $\ell_1$ is employed to assess localization precision in some exemplary fluorescence microscopy problems exploiting single-molecule activation. Several numerical experiments are reported to validate the proposed approach on synthetic and realistic ISBI data.

The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in the approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities are found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers.

Variable selection methods are required in practical statistical modeling, to identify and include only the most relevant predictors, and then improving model interpretability. Such variable selection methods are typically employed in regression models, for instance in this article for the Poisson Log Normal model (PLN, Chiquet et al., 2021). This model aim to explain multivariate count data using dependent variables, and its utility was demonstrating in scientific fields such as ecology and agronomy. In the case of the PLN model, most recent papers focus on sparse networks inference through combination of the likelihood with a L1 -penalty on the precision matrix. In this paper, we propose to rely on a recent penalization method (SIC, O'Neill and Burke, 2023), which consists in smoothly approximating the L0-penalty, and that avoids the calibration of a tuning parameter with a cross-validation procedure. Moreover, this work focuses on the coefficient matrix of the PLN model and establishes an inference procedure ensuring effective variable selection performance, so that the resulting fitted model explaining multivariate count data using only relevant explanatory variables. Our proposal involves implementing a procedure that integrates the SIC penalization algorithm (epsilon-telescoping) and the PLN model fitting algorithm (a variational EM algorithm). To support our proposal, we provide theoretical results and insights about the penalization method, and we perform simulation studies to assess the method, which is also applied on real datasets.

This paper makes two contributions to the field of text-based patent similarity. First, it compares the performance of different kinds of patent-specific pretrained embedding models, namely static word embeddings (such as word2vec and doc2vec models) and contextual word embeddings (such as transformers based models), on the task of patent similarity calculation. Second, it compares specifically the performance of Sentence Transformers (SBERT) architectures with different training phases on the patent similarity task. To assess the models' performance, we use information about patent interferences, a phenomenon in which two or more patent claims belonging to different patent applications are proven to be overlapping by patent examiners. Therefore, we use these interferences cases as a proxy for maximum similarity between two patents, treating them as ground-truth to evaluate the performance of the different embedding models. Our results point out that, first, Patent SBERT-adapt-ub, the domain adaptation of the pretrained Sentence Transformer architecture proposed in this research, outperforms the current state-of-the-art in patent similarity. Second, they show that, in some cases, large static models performances are still comparable to contextual ones when trained on extensive data; thus, we believe that the superiority in the performance of contextual embeddings may not be related to the actual architecture but rather to the way the training phase is performed.

Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.

This paper studies optimal hypothesis testing for nonregular statistical models with parameter-dependent support. We consider both one-sided and two-sided hypothesis testing and develop asymptotically uniformly most powerful tests based on the likelihood ratio process. The proposed one-sided test involves randomization to achieve asymptotic size control, some tuning constant to avoid discontinuities in the limiting likelihood ratio process, and a user-specified alternative hypothetical value to achieve the asymptotic optimality. Our two-sided test becomes asymptotically uniformly most powerful without imposing further restrictions such as unbiasedness. Simulation results illustrate desirable power properties of the proposed tests.

We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.

This paper considers computational methods that split a vector field into three components in the case when both the vector field and the split components might be unbounded. We first employ classical Taylor expansion which, after some algebra, results in an expression for a second-order splitting which, strictly speaking, makes sense only for bounded operators. Next, using an alternative approach, we derive an error expression and an error bound in the same setting which are however valid in the presence of unbounded operators. While the paper itself is concerned with second-order splittings using three components, the method of proof in the presence of unboundedness remains valid (although significantly more complicated) in a more general scenario, which will be the subject of a forthcoming paper.

北京阿比特科技有限公司