Our objective in this paper is to estimate spine curvature in DXA scans. To this end we first train a neural network to predict the middle spine curve in the scan, and then use an integral-based method to determine the curvature along the spine curve. We use the curvature to compare to the standard angle scoliosis measure obtained using the DXA Scoliosis Method (DSM). The performance improves over the prior work of Jamaludin et al. 2018. We show that the maximum curvature can be used as a scoring function for ordering the severity of spinal deformation.
Distance measures between graphs are important primitives for a variety of learning tasks. In this work, we describe an unsupervised, optimal transport based approach to define a distance between graphs. Our idea is to derive representations of graphs as Gaussian mixture models, fitted to distributions of sampled node embeddings over the same space. The Wasserstein distance between these Gaussian mixture distributions then yields an interpretable and easily computable distance measure, which can further be tailored for the comparison at hand by choosing appropriate embeddings. We propose two embeddings for this framework and show that under certain assumptions about the shape of the resulting Gaussian mixture components, further computational improvements of this Wasserstein distance can be achieved. An empirical validation of our findings on synthetic data and real-world Functional Brain Connectivity networks shows promising performance compared to existing embedding methods.
In this paper, we first extend the result of FL93 and prove universal consistency for a classification rule based on wide and deep ReLU neural networks trained on the logistic loss. Unlike the approach in FL93 that decomposes the estimation and empirical error, we directly analyze the classification risk based on the observation that a realization of a neural network that is wide enough is capable of interpolating an arbitrary number of points. Secondly, we give sufficient conditions for a class of probability measures under which classifiers based on neural networks achieve minimax optimal rates of convergence. Our result is motivated from the practitioner's observation that neural networks are often trained to achieve 0 training error, which is the case for our proposed neural network classifiers. Our proofs hinge on recent developments in empirical risk minimization and on approximation rates of deep ReLU neural networks for various function classes of interest. Applications to classical function spaces of smoothness illustrate the usefulness of our result.
This paper introduces a new neural network model that aims to mimic the biological brain more closely by structuring the network as a complete directed graph that processes continuous data for each timestep. Current neural networks have structures that vaguely mimic the brain structure, such as neurons, convolutions, and recurrence. The model proposed in this paper adds additional structural properties by introducing cycles into the neuron connections and removing the sequential nature commonly seen in other network layers. Furthermore, the model has continuous input and output, inspired by spiking neural networks, which allows the network to learn a process of classification, rather than simply returning the final result.
This paper describes a between-subjects Amazon Mechanical Turk study (n = 220) that investigated how a robot's affective narrative influences its ability to elicit empathy in human observers. We first conducted a pilot study to develop and validate the robot's affective narratives. Then, in the full study, the robot used one of three different affective narrative strategies (funny, sad, neutral) while becoming less functional at its shopping task over the course of the interaction. As the functionality of the robot degraded, participants were repeatedly asked if they were willing to help the robot. The results showed that conveying a sad narrative significantly influenced the participants' willingness to help the robot throughout the interaction and determined whether participants felt empathetic toward the robot throughout the interaction. Furthermore, a higher amount of past experience with robots also increased the participants' willingness to help the robot. This work suggests that affective narratives can be useful in short-term interactions that benefit from emotional connections between humans and robots.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.